• Title/Summary/Keyword: enhancement factor

Search Result 929, Processing Time 0.031 seconds

Research of L1 GSS Receiver Performance Stabilization (신호감시국용 위성항법 L1 수신기 성능 안정화에 대한 연구)

  • Kim, Myung-Soon;Kim, Jae-Hyun;Lee, Sang-Uk
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • This research is performed to upgrade the performance and stabilize ther operation of GSS L1 receiver. One of the this research result is that the pre-development GSS receiver is amended to remove performance degradation factor so GSS L1 receiver performance enhancement is achieved. Other is that as a result of long run test, real environment test is performed and GSS L1 receiver operate under the GPS live signal receiving environment. Key result of this research is localization of GSS receiver.

Plasma Charge Damage on Wafer Edge Transistor in Dry Etch Process (Dry Etch 공정에 의한 Wafer Edge Plasma Damage 개선 연구)

  • Han, Won-Man;Kim, Jae-Pil;Ru, Tae-Kwan;Kim, Chung-Howan;Bae, Kyong-Sung;Roh, Yong-Han
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.109-110
    • /
    • 2007
  • Plasma etching process에서 magnetic field 영향에 관한 연구이다. High level dry etch process를 위해서는 high density plasma(HDP)가 요구된다. HDP를 위해서 MERIE(Magnetical enhancement reactive ion etcher) type의 설비가 사용되며 process chamber side에 4개의 magnetic coil을 사용한다. 이런 magnetic factor가 특히 wafer edge부문에 plasma charging에 의한 damage를 유발시키고 이로 인해 device Vth(Threshold voltage)가 shift 되면서 제품의 program 동작 문제의 원인이 되는 것을 발견하였다. 이번 연구에서 magnetic field와 관련된 plasma charge damage를 확인하고 damage free한 공정조건을 확보하게 되었다.

  • PDF

Lower Extremity Stiffness Characteristics in Running and Jumping: Methodology and Implications for Athletic Performance

  • Ryu, Joong Hyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.1
    • /
    • pp.61-67
    • /
    • 2018
  • Objective: The human body is often modelled as a spring-mass system. Lower extremity stiffness has been considered to be one of key factor in the performance enhancement of running, jumping, and hopping involved sports activities. There are several different classification of lower extremity stiffness consisting of vertical stiffness, leg stiffness, joint stiffness, as well as muscle and tendon stiffness. The primary purpose of this paper was to review the literature and describe different stiffness models and discuss applications of stiffness models while engaging in sports activities. In addition, this paper provided a current update of the lower extremity literature as it investigates the relationships between lower extremity stiffness and both functional performance and injury. Summary: Because various methods for measuring lower extremity stiffness are existing, measurements should always be accompanied by a detailed description including type of stiffness, testing method and calculation method. Moreover, investigator should be cautious when comparing lower extremity stiffness from different methods. Some evidence highlights that optimal degree of lower extremity stiffness is required for successful athletic performance. However, the actual magnitude of stiffness required to optimize performance is relatively unexplored. Direct relationship between lower extremity stiffness and lower extremity injuries has not clearly been established yet. Overall, high stiffness is potentially associate risk factors of lower extremity injuries although some of the evidence is controversial. Prospective injures studies are necessary to confirm this relationship. Moreover, further biomechanical and physiological investigation is needed to identify the optimal regulation of the lower limb stiffness behavior and its impact on athletic performance and lower limb injuries.

Estimation of wind power generation of micro wind turbine on the roof of high rise buildings in urban area (도심 고층건물 지붕에서의 소형 풍력발전기 발전량 예측)

  • Choi, Hyung-Sik;Chang, Ho-Nam
    • New & Renewable Energy
    • /
    • v.5 no.4
    • /
    • pp.21-27
    • /
    • 2009
  • Potential yield of micro wind turbine on the roof of urban high rise buildings is estimated. Urban wind profile is modeled as logarithmic profile above the mean building height with roughness length 0.8, displacement 7.5 m. Mean wind velocity from the meteorological agency data at the hight of 50m is used. Wind velocity changes are simulated on the rectangular roof of 26, 45, 53 degree pitch and the circular roof by computational fluid dynamics and RNG k-$\varepsilon$ turbulence models. Wind velocity increased approximately by a factor of the order of 270 % on the 26 degree pitched roof. In the 100 m and 200 m high buildings, wind enhancement is greater at the front side than at the center of the building. In the building arrangement model wind velocity changes abruptly and it becomes wind gusts. When commercial wind turbines are installed on the building roof, average power and annual power generation enhanced by 3~4 times than normal wind velocity at 50m and 6 kw wind turbine can generate 1053 kwh per month on the 26 degree pitched roof at 50m height and sufficiently supply electrical power with 15 household for common electrical use and food waste disposer. However, power output will vary significantly by the wind conditions in the order of $\pm$ 20 %.

  • PDF

A Study of Mechanical Interfacial Properties of Carbon Nanotube on Carbon Fiber/Epoxy Resin Composites (탄소나노튜브로 표면처리 된 탄소섬유/에폭시 수지 복합재료의 기계적 특성 연구)

  • Hong, Eunmi;Lee, Kyuhwan;Kim, Yangdo;Lim, Dongchan
    • Journal of Surface Science and Engineering
    • /
    • v.46 no.5
    • /
    • pp.223-228
    • /
    • 2013
  • In this work, the grow of carbon nanotube (CNT) on carbon fiber was introduced on PAN-based carbon fibers for the enhancement of mechanical interfacial strength of carbon fibers-reinforced composites. The surface properties of carbon fibers were determined by scanning electron microscopy (SEM) and mechanical interfacial properties of the composites were studied by interlaminar shear strength (ILSS). From the results, it was found that the mechanical interfacial properties of CNT-carbon fibers-reinforced composites (CNT-CFRPs) enhanced with decreasing the CNT content. The excessive CNT content can lead the failure due to the interfacial separation between fibers and matrices in this system. In conclusion, the optimum CNT content on carbon fiber surfaces can be a key factor to determine the mechanical interfacial properties of the CNT-CFRPs.

Parameter and Brightness Characteristic Analysis of Antena for Efficiency Improvement on Electrodeless Fluorescent Lamp (무전극 램프의 효율향상을 위한 안테나의 파라미타 특성 및 휘도특성)

  • Yang, Jong-Kyung;Choi, Gi-Seung;Pack, Gwang-Hyeon;Choi, Yong-Sung;Lee, Jong-Chan;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.531-534
    • /
    • 2004
  • In Recent, it became necessary to develope the technology about electrodeless fluorescent lamp according to demand of the electodeless fluorescent lamp system that used higher efficiency and advantage of long-lifetime. Especially, in the electordeless fluorescent lamp which used H-mode, efficiency of lamp is decided from matching parameter of antena and inverter. So it is of the utmost importance to design antena and inverter Therefore, this paper used a transformer principle for efficiency rising of electrodeless fluorescent lamp and interpreted an equivalent circuit, used an impedance analyzer in order to confirm a performance enhancement of lamp along design of antenna, and confirmed parameter characteristic of R, L, C, Z, Q-factor along a change of magnetic flux density. Also, this paper confirmed a luminance characteristic of electordeless lamp along parameter change with measuring optical characteristic along a change of magnetic flux density

  • PDF

Fresh and hardened properties of rubberized concrete using fine rubber and silpozz

  • Padhi, S.;Panda, K.C.
    • Advances in concrete construction
    • /
    • v.4 no.1
    • /
    • pp.49-69
    • /
    • 2016
  • This work investigates the mechanical properties of conventional concrete (CC) and self compacting concrete (SCC) using fine rubber and silpozz were accompanied by a comparative study between conventional rubberized concrete (CRC) and self compacting rubberized concrete (SCRC). Fine rubber (FR) from scrap tires has replaced the fine aggregate (FA) and Silpozz has been used as a replacement of cement at the proportions of 5, 10 and 15%. Silpozz as a partial replacement of cement in addition of superplasticiser (SP) increases the strength of concrete. Fresh concrete properties such as slump test, compaction factor test for CRC, whereas for SCRC slump flow, $T_{500}$, V-funnel, L-box, U-box, J-ring tests were conducted along with the hardened properties tests like compressive, split tensile and flexural strength test at 7, 28 and 90 days of curing. The durability and microstructural behavior for both CRC and SCRC were investigated. FR used in the present study is 4.75 mm passing with fineness modulus 4.74.M30 grade concrete is used with a mix proportion of 1:1.44:2.91 and w/c ratio as 0.43. The results indicate that as FR quantity increases, workability of both CRC and SCRC decreases. The results also show that the replacement of natural fine aggregate (NFA) with FR particles decreases the compressive strength with the increase of flexural strength observed upto 5% replacement of FR. Also replacement of cement with silpozz resulted enhancement of strength in SCRC.

Identification and Structuring of the Workplace Risk Factors Regarding Power Press Machines

  • Kuk, Kang-Hur;Park, Dong-Hyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.56
    • /
    • pp.65-85
    • /
    • 2000
  • Industrial accidents have been consistently increased in terms of medical costs, lost work days, and incidence rates every year in Korea. Since the infrastructure of the industry changed shifts rapidly from 1980s in the developing countries such as South Korea, the nature and magnitude of the industrial accidents have also undergone a major shift. The situation is especially severe in small-to-medium sized industry(SMI). This article reports the development of a systematic evaluation system of risk factors specifically for the SMIs. The new approach introduced by this article is geared to the systematic identification and evaluation of the injuries from power press machines using the Analytic Hierarchy Process with the key evaluation data generated and evaluated by the employees on site. A total of 21 companies was studied and surveyed using the hierarchical structures of the cause-effect relationship of the mechanical injuries and their countermeasures. For the relative weighting of each risk factor, separate questionnaire survey was conducted for the selected workers from each company who had worked for more than 10 years in press work. Most participants (48 out of 62) replied that human attributes were the most significant factors for mechanical injuries fellowed by administration, machine, and work environment factors. The result also showed that the self-motivated risk assessment and safety enhancement activities would be an effective and efficient way of managing the risk factors in the SMIs.

  • PDF

A Study on the Improvement of R&D commercialization policy system for Railroad Transportation (철도교통 분야 정책·제도적 R&D 실용화 촉진 방안 연구)

  • Kim, Dong-Hee;Rhu, Jae-Kyun;Yang, Keun-Yul
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.3
    • /
    • pp.289-296
    • /
    • 2015
  • Recently, the Korean government has been making efforts to achieve 'creative economy' based on science and technology. As part of these efforts, it has been promoted specific policies for innovation and performance enhancement of national R&D projects. They contains commercialization of research outcomes, technology transfer, technology based startup and support small and medium-sized businesses. The railroad transportation industry is a representative in the field of SOC and has own characteristics different from other industry areas. Especially, industry and market of railroad transportation are directly related to planning and implementation of government SOC policies. So in order to promoting commercialization of railroad transportation projects, it is very important to ensure consistency between government policies and R&D projects. In this paper, we investigate barriers of successful commercialization with typical researchers in the area of railroad transportation, and suggest problems and improvements of policy-based commercialization by giving specific examples.

The Origin of Coercivity Enhancement of Sintered NdFeB Magnets Prepared by Dy Addition

  • Yu, N.J.;Pan, M.X.;Zhang, P.Y.;Ge, H.L.
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.235-239
    • /
    • 2013
  • The effect of Dy addition on the microstructure and magnetic properties of the sintered NdFeB magnets was investigated. The results of the microstructure analysis showed that Dy-free and Dy-doped samples are composed of $Nd_2Fe_{14}B$ (P42/mnm) and a trace of Nd-rich phase. Dy addition reduces significantly the pole density factor of (004), (006) and (008) crystal faces as estimated by the Horta formula. Accordingly, the coercivity of the Dy-doped sample increases from 2038 $kA{\cdot}m^{-1}$ up to 2288 $kA{\cdot}m^{-1}$. The $H_{cj}(T)/M_s(T)$ versus $H^{min}_N/M_s(T)$ (Kronm$\ddot{u}$ller-plot) behavior shows that the nucleation is the dominating mechanism for the magnetization reversal in these two kinds of magnets, and two microstructural parameters of ${\alpha}_k$ and $N_{eff}$ are obtained. The Kronm$\ddot{u}$ller-Plot gives evidence for an increase of the ${\alpha}_k$ responsible for an increase of the coercivity as the result of the increase of the magnetic field as the magnetic domain reversed.