• 제목/요약/키워드: enhanced storage stability

검색결과 84건 처리시간 0.025초

코발트 페라이트 나노입자/탄소 나노섬유 복합전극 제조 및 슈퍼커패시터 특성평가 (Preparation of CoFe2O4 Nanoparticle Decorated on Electrospun Carbon Nanofiber Composite Electrodes for Supercapacitors)

  • 황혜원;육서연;정민식;이동주
    • 한국분말재료학회지
    • /
    • 제28권6호
    • /
    • pp.470-477
    • /
    • 2021
  • Energy storage systems should address issues such as power fluctuations and rapid charge-discharge; to meet this requirement, CoFe2O4 (CFO) spinel nanoparticles with a suitable electrical conductivity and various redox states are synthesized and used as electrode materials for supercapacitors. In particular, CFO electrodes combined with carbon nanofibers (CNFs) can provide long-term cycling stability by fabricating binder-free three-dimensional electrodes. In this study, CFO-decorated CNFs are prepared by electrospinning and a low-cost hydrothermal method. The effects of heat treatment, such as the activation of CNFs (ACNFs) and calcination of CFO-decorated CNFs (C-CFO/ACNFs), are investigated. The C-CFO/ACNF electrode exhibits a high specific capacitance of 142.9 F/g at a scan rate of 5 mV/s and superior rate capability of 77.6% capacitance retention at a high scan rate of 500 mV/s. This electrode also achieves the lowest charge transfer resistance of 0.0063 Ω and excellent cycling stability (93.5% retention after 5,000 cycles) because of the improved ion conductivity by pathway formation and structural stability. The results of our work are expected to open a new route for manufacturing hybrid capacitor electrodes containing the C-CFO/ACNF electrode that can be easily prepared with a low-cost and simple process with enhanced electrochemical performance.

COMSOL Multiphysics®와 PyLith의 순차 적용을 통한 지중 유체 주입과 유발지진 공탄성 수치 모사 기법 연구 (Sequential Use of COMSOL Multiphysics® and PyLith for Poroelastic Modeling of Fluid Injection and Induced Earthquakes)

  • 장찬희;김현나;소병달
    • 지질공학
    • /
    • 제32권4호
    • /
    • pp.643-659
    • /
    • 2022
  • 최근 지중저장기술(예, 온실가스 심지층 처분, 인공지열저류층 발전 등)이 활발히 수행됨에 따라, 유체 주입과 저장부지 안정성 사이의 역학적 관계에 관한 정량적 이해의 중요성이 인지되고 있다. 지중 유체 주입은 공극압 및 지중응력 교란과 지층의 역학적 불안정성을 야기할 수 있어, 유체 주입에 대한 다공탄성 수치 모형 구축이 요구된다. 본 연구에서는 순차적인 COMSOL-PyLith-COMSOL 유체 주입-유발지진 다공탄성 수치 모사를 수행한다. 유한요소 상용 소프트웨어인 COMSOL을 이용해 단층에 가해지는 쿨롱 파괴 응력(CFS) 변화를 시간에 따라 추적하였고, CFS 변화량이 임계값(예, 0.1 MPa)을 초과할 경우, 모형의 정보(기하구조, 물성 등)를 유한요소 오픈소스 코드인 PyLith로 이동시키는 알고리즘을 구축했다. PyLith는 단층의 미끄러짐을 모사하고, 미끌림에 의한 변위장을 획득한다. 이후 변위장을 COMSOL로 이동시켜 지진에 의한 응력 및 표면 변위를 계산한다. 수치 모사 결과, 주입 기간 중엔 주입정 근거리에서 큰 변화(공극압, CFS 변화 등)를 보였고, 주입 종류 후에는 잔류 응력이 원거리 영역으로 확산하는 양상이 나타났다. 이는 주입 종료 후 지속적인 모니터링의 필요성을 제안한다. 또한, 단층과 주입층 물성(예, 투수계수, Biot-Willis 계수)에 따른 CFS 변화량 비교는 주입정 위치 선정 시 주입층 및 주변 지층에 대한 물성 파악이 중요함을 의미한다. 단층 미끄러짐 양에 따른 표면 변위 및 이암층에 가해지는 편차응력은 다양한 단층 미끌림 시나리오 설정의 필요성을 지시한다.

감마선 조사와 저장온도에 따른 복숭아의 품질특성 변화 (Changes of Nutritional Compounds and Texture Characteristics of Peaches (Prunus persica L. Batsch) during Post-irradiation Storage at Different Temperature)

  • 윤혜정;임상용;허정무;이보영;최영지;권중호;김동호
    • 한국식품저장유통학회지
    • /
    • 제15권3호
    • /
    • pp.377-384
    • /
    • 2008
  • 복숭아의 보존기한 연장을 위한 품질 향상을 위한 방법으로 적숙기의 복숭아에 1 kGy의 감마선 조사를 실시한 다음, $4^{\circ}C$$25^{\circ}C$의 저장조건에서 복숭아의 일반적인 품질 특성 및 관능학적 품질 특성을 평가하였다. 연구 결과, 과실류에 대한 Codex 권장선량인 1 kGy 선량의 감마선 조사에서 복숭아의 품질변화는 나타나지지 않았으며 초기 오염미생물의 균수를 약 2 log 단위($10^2\;CFU/g$) 정도 감소시키는 제어 효과가 확인되었다. 감마선 조사 복숭아의 보존 실험에서, 감마선 조사된 복숭아는 $25^{\circ}C$의 조건에서는 약 1주, $4^{\circ}C$의 조건에서 약 6주 이상의 미생물학적 품질 안전성을 나타내었으며 위축률, 수분감소, 경도 등의 이화학적 품질에서도 개선효과가 확인되었다. 감마선 조사 직후에는 감마선 조사 복숭아와 비조사 시료간의 관능특성 차이는 관찰되지 않았으나, 보존기간이 경과함에 따라 감마선 조사시료의 선호도가 비조사 시료보다 더 증가함을 확인하였다. 따라서 감마선 조사와 냉장보존을 병용할 경우, 상온 1주 이하인 복숭아의 미생물학적 보존기한을 4주 이상으로 연장시킬 수 있을 것으로 사료되었다.

Fe3O4 Nanoparticles on MWCNTs Backbone for Lithium Ion Batteries

  • Lee, Kangsoo;Shin, Seo Yoon;Yoon, Young Soo
    • 한국세라믹학회지
    • /
    • 제53권3호
    • /
    • pp.376-380
    • /
    • 2016
  • A composite electrode made of iron oxide nanoparticles/multi-wall carbon nanotube (iNPs/M) delivers high specific capacity and cycle durability. At a rate of $200mAg^{-1}$, the electrode shows a high discharge capacity of ${\sim}664mAhg^{-1}$ after 100 cycles, which is ~ 70% of the theoretical capacity of $Fe_3O_4$. Carbon black, carbon nanotube, and graphene as anode materials have been explored to improve the electrical conductivity and cycle stability in Li ion batteries. Herein, iron oxide nanoparticles on acid treated MWCNTs as a conductive platform are combined to enhance the drawbacks of $Fe_3O_4$ such as low electrical conductivity and volume expansion during the alloying/dealloying process. Enhanced performance was achieved due to a synergistic effect between electrically 3D networks of conductive MWCNTs and the high Li ion storage ability of $Fe_3O_4$ nanoparticles (iNPs).

사이클로스포린을 함유한 고형 지질미립구의 제조와 평가 (Preparation and Evaluation of Solid lipid Microspheres Containing Cyclosporine A)

  • 양수근;박준상;최영욱
    • 약학회지
    • /
    • 제39권5호
    • /
    • pp.487-494
    • /
    • 1995
  • Solid lipid microspheres (SLMs) were prepared using various lipids and solidifying agents, in order to enhance the gastrointestinal absorption of Cyclosporine A (Cs A) which is a practically water-insoluble drug with low systemic bioavailability. Egg lecithin and HCO-60 (polyoxyethylated 60 mol, hydrogenated castor oil) were used as lipids. Stearic acid and stearyl alcohol were used as solidifying agents. Emulsion concentrates containing Cs A were prepared by mixing the melted lipid and solidifying agent with water, employing bile salts as a cosurfactant. SLMs were obtained by dispersing the warm emulsion concentrate in cold distilled water under mechanical stirring, followed by freeze drying. Physical characteristics of each SLM were investigated by particle size analysis, optical microscopy and scanning electron microscopy. Mean particle size of SLMs was in the range of 30 to 40.mu.m. The SLMs were in good appearance with spherical shape before freeze drying, but were deformed partially after freeze drying. Drug loading efficiencies of SLMs were observed as high as 80 to 90% in average. The systemic bioavailability of Cs A from different SLM formula was investigated in rats following oral administration. Cs A in whole blood was extracted and assayed by HPLC. SLMs revealed the higher bioavailabilities than the standard formula based on the marketed product. SLMs might have several advantages over standard formula for enhanced gastrointestinal absorption, controlled release properties, high loading capacity of the water-insoluble drug, and feasibility of solid dosage forms with better stability in storage.

  • PDF

The therapeutic potential of immune cell-derived exosomes as an alternative to adoptive cell transfer

  • Hong, Yeonsun;Kim, In-San
    • BMB Reports
    • /
    • 제55권1호
    • /
    • pp.39-47
    • /
    • 2022
  • Adoptive cell transfer (ACT), a form of cell-based immunotherapy that eliminates cancer by restoring and strengthening the body's immune system, has revolutionized cancer treatment. ACT entails intravenous transfer of either tumor-resident or peripheral blood-modified immune cells into cancer patients to mediate anti-tumor response. Although these immune cells control and eradicate cancer via enhanced cytotoxicity against specific tumor antigens, several side effects have been frequently reported in clinical trials. Recently, exosomes, potential cell-free therapeutics, have emerged as an alternative to cell-based immunotherapies, due to their higher stability under same storage condition, lower risk of GvHD and CRS, and higher resistance to immunosuppressive tumor microenvironment. Exosomes, which are nano-sized lipid vesicles, are secreted by living cells, including immune cells. Exosomes contain proteins, lipids, and nucleic acids, and the functional role of each exosome is determined by the specific cargo derived from parental cells. Exosomes derived from cytotoxic effectors including T cells and NK cells exert anti-tumor effects via proteins such as granzyme B and FasL. In this mini-review, we describe the current understanding of the ACT and immune cell-derived exosomes and discuss the limitations of ACT and the opportunities for immune cell-derived exosomes as immune therapies.

고성능 아연-이온 전지의 고품질 집전체를 위한 그래핀 필름의 결함 제어 (Controlling Defects in Graphene Film for Enhanced-Quality Current Collector of Zinc-Ion Batteries with High Performance)

  • 이영근;안건형
    • 한국재료학회지
    • /
    • 제33권4호
    • /
    • pp.159-163
    • /
    • 2023
  • Zinc-ion Batteries (ZIBs) are currently considered to be effective energy storage devices for wearable electronics because of their low cost and high safety. Indeed, ZIBs show high power density and safety compared with conventional lithium ion batteries (LIBs) and exhibit high energy density in comparison with supercapacitors (SCs). However, in spite of their advantages, further current collector development is needed to enhance the electrochemical performance of ZIBs. To design the optimized current collector for high performance ZIBs, a high quality graphene film is suggested here, with improved electrical conductivity by controlling the defects in the graphene film. The graphene film showed improved electrical conductivity and good electron transfer between the current collector and active material, which led to a high specific capacity of 346.3 mAh g-1 at a current density of 100 mA g-1, a high-rate performance with 116.3 mAh g-1 at a current density of 2,000 mA g-1, and good cycling stability (68.0 % after 100 cycles at a current density of 1,000 mA g-1). The improved electrochemical performance is firmly because of the defects-controlled graphene film, leading to improved electrical conductivity and thus more efficient electron transfer between the current collector and active material.

Effect of Al and Nb Doping on the Electrochemical Characteristics of Garnet-type Li7La3Zr2O12 Solid Electrolytes

  • Ahmed Tarif;Chan-Jin Park
    • Corrosion Science and Technology
    • /
    • 제22권6호
    • /
    • pp.408-418
    • /
    • 2023
  • In this study, we synthesized and characterized garnet-type Li7-xAlxLa3Zr2-(5/4)yNbyO12 (LALZN) solid electrolytes for all-solid-state battery applications. Our novel approach focused on enhancing ionic conductivity, which is crucial for battery efficiency. A systematic examination found that co-doping with Al and Nb significantly improved this conductivity. Al3+ and Nb5+ ions were incorporated at Li+ and Zr4+ sites, respectively. This doping resulted in LALZN electrolytes with optimized properties, most notably enhanced ionic conductivity. An optimized mixture with 0.25 mol each of Al and Nb dopants achieved a peak conductivity of 1.32 × 10-4 S cm-1. We fabricated symmetric cells using these electrolytes and observed excellent charge-discharge profiles and remarkable cycling longevity, demonstrating the potential for long-term application in battery systems. The garnet-type LALZN solid electrolytes, with their high ionic conductivity and stability, show great potential for enhancing the performance of all-solid-state batteries. This study not only advances the understanding of effective doping strategies but also underscores the practical applicability of the LALZN system in modern energy storage solutions.

NCM 리튬 이온 배터리의 양극 표면 코팅물질에 따른 성능변화 ( Performance variation of Nickel-Cobalt-Manganese lithium-ion battery by cathode surface coating materials )

  • 유진욱;표성규
    • 한국표면공학회지
    • /
    • 제57권2호
    • /
    • pp.57-70
    • /
    • 2024
  • Nickel-cobalt-manganese (NCM) lithium-ion batteries(LIBs) are increasingly prominent in the energy storage system due to their high energy density and cost-effectiveness. However, they face significant challenges, such as rapid capacity fading and structural instability during high-voltage operation cycles. Addressing these issues, numerous researchers have studied the enhancement of electrochemical performance through the coating of NCM cathode materials with substances like metal oxides, lithium composites, and polymers. Coating these cathode materials serves several critical functions: it acts as a protection barrier against electrolyte decomposition, mitigates the dissolution of transition metals, enhances the structural integrity of the electrode, and can even improve the ionic conductivity of the cathode. Ultimately, these improvements lead to better cycle stability, increased efficiency, and enhanced overall battery life, which are crucial for the advancement of NCM-based lithium-ion batteries in high-demand applications. So, this paper will review various cathode coating materials and examine the roles each plays in improving battery performance.

A Quantitative Evaluation and Comparison of Harmonic Elimination Algorithms Based on Moving Average Filter and Delayed Signal Cancellation in Phase Synchronization Applications

  • Xiong, Liansong;Zhuo, Fang;Wang, Feng;Liu, Xiaokang;Zhu, Minghua;Yi, Hao
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.717-730
    • /
    • 2016
  • The harmonic components of grid voltage result in oscillations of the calculated phase obtained via phase synchronization. This affects the security and stability of grid-connected converters. Moving average filter, delayed signal cancellation and their related harmonic elimination algorithms are major methods for such issues. However, all of the existing methods have their limitations in dealing with multiple harmonics issues. Furthermore, few studies have focused on a comparison and evaluation of these algorithms to achieve optimal algorithm selections in specific applications. In this paper, these algorithms are quantitatively analyzed based on the derived mathematical models. Moreover, an enhanced moving average filter and enhanced delayed signal cancellation algorithms, which are applicable for eliminating a group of selective harmonics with only one calculation block, are proposed. On this basis, both a comprehensive comparison and a quantitative evaluation of all of the aforementioned algorithms are made from several aspects, including response speed, required data storage size, sensitivity to sampling frequency, and elimination of random noise and harmonics. With the conclusions derived in this paper, better overall performance in terms of harmonic elimination can be achieved. In addition, experimental results under different conditions demonstrate the validity of this study.