• Title/Summary/Keyword: enhanced genetic algorithm

Search Result 82, Processing Time 0.025 seconds

Optimal Design of Squeeze Film Damper Using an Enhanced Genetic Algorithm (향상된 유전알고리듬을 이용한 스퀴즈 필름 댐퍼의 최적설계)

  • 김영찬;안영공;양보석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.805-809
    • /
    • 2001
  • This paper is presented to determine the optimal parameters of squeeze film damper using an enhanced genetic algorithm (EGA). The damper design parameters are the radius, length and radial clearance of the damper. The objective function is minimization of a transmitted load between bearing and foundation at the operating and critical speeds of a flexible rotor. The present algorithm was the synthesis of a genetic algorithm with simplex method for a local concentrate search. This hybrid algorithm is not only faster than the standard genetic algorithm, but also gives a more accurate solution and can find both the global and local optimum solution. The numerical example is presented that illustrated the effectiveness of enhanced genetic algorithm for the optimal design of the squeeze film damper for reducing transmitted load.

  • PDF

Study on Pattern Synthesis of Conformal Array Antenna Using Enhanced Adaptive Genetic Algorithm (향상된 적응형 유전 알고리즘을 이용한 컨포멀 배열 안테나의 빔 합성 연구)

  • Seong, Cheol-Min;Lee, Jae-Duk;Han, In-Hee;Ryu, Hong-Kyun;Lee, Kyu-Song;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.5
    • /
    • pp.592-600
    • /
    • 2014
  • This paper proposes an enhanced adaptive genetic algorithm(EAGA) dedicated to pattern synthesis of array antenna which conforms to a curved surface of rotation with quadratic function. EAGA combines adaptive genetic algorithm(AGA) with invasive weed optimization(IWO) for the faster convergence and the lower cost value of the cost function. The amplitude and phase of each excited weighting factor are optimized to meet the required goals using EAGA. The EAGA results indicate that the proposed algorithm is superior to AGA when applied to the problem of conformal array antenna pattern synthesis.

Optimal Design of a Squeeze Film Damper Using an Enhanced Genetic Algorithm

  • Ahn, Young-Kong;Kim, Young-Chan;Yang, Bo-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1938-1948
    • /
    • 2003
  • This paper represents that an enhanced genetic algorithm (EGA) is applied to optimal design of a squeeze film damper (SFD) to minimize the maximum transmitted load between the bearing and foundation in the operational speed range. A general genetic algorithm (GA) is well known as a useful global optimization technique for complex and nonlinear optimization problems. The EGA consists of the GA to optimize multi-modal functions and the simplex method to search intensively the candidate solutions by the GA for optimal solutions. The performance of the EGA with a benchmark function is compared to them by the IGA (Immune-Genetic Algorithm) and SQP (Sequential Quadratic Programming). The radius, length and radial clearance of the SFD are defined as the design parameters. The objective function is the minimization of a maximum transmitted load of a flexible rotor system with the nonlinear SFDs in the operating speed range. The effectiveness of the EGA for the optimal design of the SFD is discussed from a numerical example.

Optimization of Multimodal Function Using An Enhanced Genetic Algorithm and Simplex Method (향상된 유전알고리듬과 Simplex method을 이용한 다봉성 함수의 최적화)

  • Kim, Young-Chan;Yang, Bo-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.587-592
    • /
    • 2000
  • The optimization method based on an enhanced genetic algorithms is proposed for multimodal function optimization in this paper. This method is consisted of two main steps. The first step is global search step using the genetic algorithm(GA) and function assurance criterion(FAC). The belonging of an population to initial solution group is decided according to the FAC. The second step is to decide the similarity between individuals, and to research the optimum solutions by simplex method in reconstructive search space. Two numerical examples are also presented in this paper to comparing with conventional methods.

  • PDF

An Enhanced Genetic Algorithm for Optimization of Multimodal Function (다봉성 함수의 최적화를 위한 향상된 유전알고리듬의 제안)

  • 김영찬;양보석
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.241-244
    • /
    • 2000
  • The optimization method based on an enhanced genetic algorithms is proposed for multimodal function optimization in this paper This method is consisted of two main steps. The first step is global search step using the genetic algorithm(GA) and function assurance criterion(FAC). The belonging of an population to initial solution group is decided according to the FAC. The second step is to decide resemblance between individuals and research optimum solutions by single point method in reconstructive research space. Two numerical examples are also presented in this paper to comparing with conventional methods.

  • PDF

Optimization of Engine Mount Using an Enhanced Genetic Algorithm (향상된 유전알고리듬을 이용한 유체마운트의 최적화)

  • Ahn, Young-Kong;Kim, Young-Chan;Yang, Bo-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.12
    • /
    • pp.935-942
    • /
    • 2002
  • When designing fluid mounts, design parameters can be varied in order to obtain a desired notch frequency and notch depth. The notch frequency is a function of the mount parameters and is typically selected by the designer to occur at the vibration disturbance frequency. Since the process of choosing these parameters can involve some trial and error, it seems to be a great application for obtaining optimal performance of the mount. Many combinations of parameters are possible to give us the desired notch frequency, but the question is which combination provides the lowest depth. Therefore. an automatic optimal technique is needed to optimize the performance of the fluid mount. In this study. the enhanced genetic algorithm (EGA) is applied to minimizing transmissibility of a fluid mount at the desired notch frequency, and at the notch and resonant frequencies. The EGA is modified genetic algorithm to search global and local optimal solutions of multi-modal function optimization. Furthermore. to reduce the searching time as compare to conventional genetic algorithm and Increase the precision of the solutions, the modified simplex method is combined with the algorithm. The results show that the performance of the optimized mount by using the hybrid algorithm is better than that of the conventional fluid mount.

An Enhanced Genetic Algorithm for Optimization of Multimodal (다봉성 함수의 최적화를 위한 향상된 유전알고리듬의 제안)

  • 김영찬;양보석
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.5
    • /
    • pp.373-378
    • /
    • 2001
  • The optimization method based on an enhanced genetic algorithms is for multimodal function optimization in this paper. This method is consisted of two main steps. The first step is a global search step using the genetic algorithm(GA) and function assurance criterion(FAC). The belonging of an population to initial solution group is decided according to the FAC. The second step is to decide the similarity between individuals, and to research the optimum solutions by single point method in reconstructive search space. Four numerical examples are also presented in this papers to comparing with conventional methods.

  • PDF

Blade Shape Optimization of Wind Turbines Using Genetic Algorithms and Pattern Search Method (유전자 알고리즘 및 패턴 서치 방법을 이용한 풍력 터빈 블레이드의 형상 최적화)

  • Yi, Jin-Hak;Sale, Danny
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.369-378
    • /
    • 2012
  • In this study, direct-search based optimization methods are applied for blade shape optimization of wind turbines and the optimization performances of several methods including conventional genetic algorithm, micro genetic algorithm and pattern search method are compared to propose a more efficient method. For this purpose, the currently available version of HARP_Opt (Horizontal Axis Rotor Performance Optimizer) code is enhanced to rationally evaluate the annual energy production value according to control strategies and to optimize the blade shape using pattern search method as well as genetic algorithm. The enhanced HARP_Opt code is applied to obtain the optimal turbine blade shape for 1MW class wind turbines. The results from pattern search method are compared with the results from conventional genetic algorithm and also micro genetic algorithm and it is found that the pattern search method has a better performance in achieving higher annual energy production and consistent optimal shapes and the micro genetic algorithm is better for reducing the calculation time.

Convergence Enhanced Successive Zooming Genetic Algorithm far Continuous Optimization Problems (연속 최적화 문제에 대한 수렴성이 개선된 순차적 주밍 유전자 알고리듬)

  • Gwon, Yeong-Du;Gwon, Sun-Beom;Gu, Nam-Seo;Jin, Seung-Bo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.406-414
    • /
    • 2002
  • A new approach, referred to as a successive zooming genetic algorithm (SZGA), is Proposed for identifying a global solution for continuous optimization problems. In order to improve the local fine-tuning capability of GA, we introduced a new method whereby the search space is zoomed around the design point with the best fitness per 100 generation. Furthermore, the reliability of the optimized solution is determined based on the theory of probability. To demonstrate the superiority of the proposed algorithm, a simple genetic algorithm, micro genetic algorithm, and the proposed algorithm were tested as regards for the minimization of a multiminima function as well as simple functions. The results confirmed that the proposed SZGA significantly improved the ability of the algorithm to identify a precise global minimum. As an example of structural optimization, the SZGA was applied to the optimal location of support points for weight minimization in the radial gate of a dam structure. The proposed algorithm identified a more exact optimum value than the standard genetic algorithms.

An Enhanced Genetic Algorithm for Global and Local Optimization Search (전역 및 국소 최적화탐색을 위한 향상된 유전 알고리듬의 제안)

  • Kim, Young-Chan;Yang, Bo-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1008-1015
    • /
    • 2002
  • This paper proposes a combinatorial method to compute the global and local solutions of optimization problem. The present hybrid algorithm is the synthesis of a genetic algorithm and a local concentrate search algorithm (simplex method). The hybrid algorithm is not only faster than the standard genetic algorithm, but also gives a more accurate solution. In addition, this algorithm can find both the global and local optimum solutions. An optimization result is presented to demonstrate that the proposed approach successfully focuses on the advantages of global and local searches. Three numerical examples are also presented in this paper to compare with conventional methods.