• Title/Summary/Keyword: enhanced biomass

Search Result 229, Processing Time 0.033 seconds

Characteristics of Acid-hydrolysis and Ethanol Fermentation of Laminaria japonica (다시마의 산 가수분해와 에탄올 발효 특성)

  • Na, Choon-Ki;Song, Myoung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.141-148
    • /
    • 2012
  • In order to study the utilization of brown seaweed Laminaria japonica as an alternative renewable feedstock for bioethanol production, the properties of acid hydrolysis and ethanol fermentation were investigated. The acid hydrolysis enhanced the final yield of fermentable sugars, which led great increase of ethanol productivity. The maximum yield of reducing sugars reached 135 mg/g-dry Laminaria japonica after 1.0N sulfuric acid-hydrolysis at $130^{\circ}C$ for 6 h. The Saccharomyces cerevisiae (ATCC 24858) could ferment $C_6$-sugars like glucose, galactose and mannose into ethanol, but not $C_5$-sugars like arabinose and xylose. Optimal fermentation time varied with sugars; 48 h for glucose, 72 h for galactose, and 96 h for mannose. Nevertheless, the ethanol yield from the hydrolysate reached 242 mg/g-dry Laminaria japonica after fermentation by the S. cerevisiae at $35^{\circ}C$ for 96 h, which corresponds to approximately 4 times more than the theoretical yield from total reducing sugars in the hydrolysates. It indicates that the non-reducing sugars or oligosaccharides dissolved in the hydrolysate played an important role in producing bioethanol. The ethanol concentration linearly increased from 2.4 to 9.2 g/L, while the ethanol yield per dry weight of biomass decreased from 242 to 185 mg/g, with increasing the ratio of biomass to acid solution from 1 to 5% (w/v). The bioethanol yield estimated was approximately 7,400~9,600 kg/ha/year, and indicated that Laminaria japonica is a promissing feedstock for bioethanol production.

Appropriate nitrogen application enhances saponin synthesis and growth mediated by optimizing root nutrient uptake ability

  • Wei, Wei;Ye, Chen;Huang, Hui-Chuan;Yang, Min;Mei, Xin-Yue;Du, Fei;He, Xia-Hong;Zhu, Shu-Sheng;Liu, Yi-Xiang
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.627-636
    • /
    • 2020
  • Background: Cultivation of medicinal crops, which synthesize hundreds of substances for curative functions, was focused on the synthesis of secondary metabolites rather than biomass accumulation. Nutrition is an important restrict factor for plant growth and secondary metabolites, but little attention has been given to the plasticity of nutrient uptake and secondary metabolites synthesis response to soil nitrogen (N) change. Methods: Two year-field experiments of Sanqi (Panax notoginseng), which can synthesize a high level of saponin in cells, were conducted to study the effects of N application on the temporal dynamics of biomass, nutrient absorption, root architecture and the relationships between these parameters and saponin synthesis. Results: Increasing N fertilizer rates could improve the dry matter yields and nutrient absorption ability through increasing the maximum daily growth (or nutrient uptake) rate. Under suitable N level (225 kg/ha N), Sanqi restricted the root length and surface and enhanced the root diameter and N uptake rate per root length (NURI) to promote nutrient absorption, but the opposite status of Sanqi root architecture and NURI was found when soil N was deficient. Furthermore, increasing N rates could promote the accumulation of saponin in roots through improving the NURI, which showed a significant positive relationship with the content of saponin in the taproots. Conclusion: Appropriate N fertilizer rates could optimize both root architecture and nutrient uptake efficiency, then promote both the accumulation of dry matter and the synthesis of saponins.

Effects of Dolomite and Oyster Shell on Nitrogen Processes in an Acidic Mine Soil Applied with Livestock Manure Compost

  • Yun, Seok-In;Seo, Dong-Hyuk;Kang, Ho Sang;Cheng, Hyocheng;Lee, Gunteak;Choi, Woo-Jung;Lee, Chang-Kyu;Jung, Mun Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.614-620
    • /
    • 2016
  • Mine soils are usually unfavorable for plant growth due to their acidic condition and low contents of organic matter and nutrients. To investigate the effect of organic material and lime on nitrogen processes in an acidic metal mine soil, we conducted an incubation experiment with treating livestock manure compost, dolomite, and oyster shell and measured soil pH, dehydrogenase activity, and concentration of soil inorganic N ($NH_4{^+}$ and $NO_3{^-}$). Compost increased not only soil inorganic N concentration, but also soil pH from 4.4 to 4.8 and dehydrogenase activity from 2.4 to $3.9{\mu}g\;TPF\;g^{-1}day^{-1}$. Applying lime with compost significantly (P<0.05) increased soil pH (5.9-6.4) and dehydrogenase activity ($4.3-7.0{\mu}g\;TPF\;g^{-1}day^{-1}$) compared with applying only compost. Here, the variation in dehydrogenase activity was significantly (P<0.05) correlated with that in soil pH. Soil inorganic N decreased with time by 14 days after treatment (DAT) due to N immobilization, but increased with time after 14 DAT. At 28 DAT, soil inorganic N was significantly (P<0.05) higher in the lime treatments than the only compost treatment. Especially the enhanced dehydrogenase activity in the lime treatments would increase soil inorganic N due to the favored mineralization of organic matter. Although compost and lime increased soil microbial biomass and enzyme activity, ammonia oxidation still proceeded slowly. We concluded that compost and lime in acidic mine soils could increase soil microbial activity and inorganic N concentration, but considerable ammonium could remain for a relatively long time.

Study on Medium Ingredient Composition for Enhancing Biomass Productionand Anti-potato Common Scab Activity of Streptomyces sp. A020645 as a BCA Candidate (생물제제(BCA) 후보균주인 Streptomyces sp. A020645 의 대량 균체생산 및 항더뎅이병 활성증진을 위한 고체배지 조성에 관한 연구)

  • Lee, Hyang-Burm;Roh, Hyo-Young;Park, Dong-Jin;Lee, So-Keum;Ko, Young-wan;Koh, Jeong-Sam;Kim, Chang-Jin
    • Research in Plant Disease
    • /
    • v.11 no.1
    • /
    • pp.66-71
    • /
    • 2005
  • The effect of medium components such as wheat bran, rice bran, oat meal, and soybean meal as basic ingredients and KH2PO4, glucose, and molasses as additives on mass production and anti-potato common scab activ ity of a streptomycete A020645 strain as a biocontrol agent (BCA) candidate was investigated. Of basicingredients, oat meal was the best one for mass poduction and enhancement of anti-potato common scabactivity. The biomass production of the active strain was more enhanced when 0.1-0.01.% glucose or molassesas additive were added into the basic medium. These information may have important implications in applying for effective formulation of BCA.

A Comparative Study on Enhanced Phytoremediation of Pb Contaminated Soil with Phosphate Solubilizing Microorganism(PSM) and EDTA in Column Reactor (칼럼 반응조에서 Phosphate Solubilizing Microorganism(PSM)과 EDTA에 의한 납 오염토양의 식물상 복원 증진에 관한 비교연구)

  • Nam, Yoon-Sun;Park, Young-Ji;Lee, In-Sook;Bae, Bum-Han
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.5
    • /
    • pp.500-506
    • /
    • 2008
  • Enhanced phytoremediation with EDTA or PSM(Phosphate solubilizing microorganism) was studied using green foxtail (Setaria viridis) in columns packed with 1,200 mgPb/kg contaminated soil to investigate the effects of EDTA or PSM on the plant uptake and vertical migration of Pb. EDTA, equimolar amount of total Pb in the column soil, was administered in two methods: the one was treated with 1/6 aliquots of the equimolar EDTA every week for 6 weeks and the other was treated with single dose of the equimolar EDTA before 14 days of harvest. The results showed that higher concentrations of Pb accumulated in the biomass of green fowtail after the chemical or biological treatment. The plant-root Pb concentration in PSM treatment(M), EDTA aliquot treatment(ES), and single dose treatment(E) was 2.6, 3.0, and 3.3 times higher, respectively, than that in the plant-root of control(164.7 mg/kg). The plant-stem Pb concentration in the M, ES and E treatment was 27, 37, and 40 times higher than that in the stem of control(8.1 mg/kg). The translocation factor, the ratio of shoot/root Pb concentration, was 0.6 in the two EDTA treatment, 0.5 in the M treatment, and 0.05 in the control, respectively. The largest amount of Pb was phyto-extracted in the E treatment whereas vertical migration of EDTA was significant in the ES treatment. This result showed that a single large dose of EDTA before harvest serves better for enhanced phytoremediation of Pb. Although, treatment with PSM showed less Pb phytoextraction by the plant but enhanced both the growth of plants in the column and microbial dehydrogenase activity in the soils. Therefore, enhanced phytoextraction of Pb with PSM treatment can be an alternative option for EDTA treatment, which is toxic to plants and soil ecosystem.

Enhanced Production of Valuable Bioactive Metabolites in Submerged Cultures of Medicinal Mushroom Ganoderma lucidum by Manipulation of Oxygen Supply

  • Zhong, Jian-Jiang;Fang, Qing-Hua;Tang, Ya-Jie
    • Journal of Plant Biotechnology
    • /
    • v.4 no.3
    • /
    • pp.109-115
    • /
    • 2002
  • Submerged cultures of Ganoderma lucidum, a valuable mushroom in traditional Chinese medicine, were used for production of bioactive Banoderic acids and Ganoderma polysaccharides. The significant effects of oxygen supply were demonstrated in both shake flasks and bioreactors. By changing the medium loading volume in a shake flask, a different value of initial volumetric oxygen transfer coefficient ($K_L$a) was obtained, and a higher $K_L$a value led to a higher biomass density and a higher productivity of both intracellular polysaccharide and ganoderic acid. In a stirred bioreactor, at an initial $K_L$a of 78.2 $h^{-1}$, a maximal cell concentration of 15.6 g/L by dry weight was obtained, as well as a maximal intracellular polysarcharide (IPS) production of 2.2 g/L and its maximal productivity of 220 mg/(L.d). An increase of initial $K_L$a led to a higher production and productivity of GA, and the GA production and productivity at an initial $K_L$a of 96.0 $h^{-1}$ was 1.8-fold those at an initial $K_L$a of 16.4 $h^{-1}$. The fundamental information obtained in this study may be useful for efficient large-scale production of these valuable bioactive products by the submerged cultures.

Bioethanol Production from Popping Pretreated Switchgrass (팝핑전처리한 스위치그라스로부터 바이오에탄올 생산)

  • Kim, Hyun-Joo;Bae, Hyeun-Jong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.147-155
    • /
    • 2012
  • Switchgrass was selected as a promising biomass resource for bioethanol production through popping pretreatment, enzymatic saccharification and fermentation using commercial cellulase and xylanase, and fermenting yeast. The reducing sugar yields of popping pretreated switchgrass after enzymatic saccharification were above 95% and the glucose in thesaccharificaiton solution to ethanol conversion rate after fermentation with $Saccharomyces$ $cerevisiae$ was reached to 89.6%. Chemical compositions after popping pretreatment developed in our laboratory were 40.8% glucose and 20.3% xylose, with much of glucose remaining and only xylose decreased to 4.75%. This means that the hemicelluloses area broke off during popping pretreatment. FE-SEMexamination of substrate particles after popping pretreatment was showed fiber separation, and tearing and presence of numerous micro pores. These changes help explain, enhanced enzymatic penetration resulting in improved hydrolysis of switchgrass particles after popping pretreatment.

Evaluation of Mechanical Performance and Flame Retardant Characteristics of Biomass-based EVA Composites using Intumescent Flame Retardant Technology

  • Park, Ji-Won;Kim, Hoon;Lee, Jung-Hun;Jang, Seong-Wook;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.189-201
    • /
    • 2018
  • Intumescent system is a highly effective flame retardant technology that takes advantage of the mechanism of foaming and carbonization. In order to materialize Intumescent system, it is necessary to use reinforcement material to improve the strength of the material. In this study, we used kenaf as a natural fiber to manufacture intumescent/EVA (ethylene vinyl acetate) composites to improve mechanical and flame retardant performance. Finally two materials with different particle shape are applied to one system. Therefore, the influence factors of the particles with different shapes on the composite material were analyzed based on the tensile test. For this purpose, we have used the tensile strength analysis model and confirmed that it can only act as a partial strength reinforcement due to weak binding force between the matrix and particles. In the combustion characteristics analysis using cone calorimeter and UL 94, the combustion characteristics were enhanced as the content of Intuemscent was increased. As the content of kenaf increased, combustion characteristics were strengthened and carbonization characteristics were weakened. Through the application of kenaf, it can be confirmed that elastic modulus improvement and combustion characteristics can be strengthened, which confirmed the possibility of development of environmentally friendly flame retardant materials.

Composition and Distribution of Phytoplankton with Size Fraction Results at Southwestern East/Japan Sea

  • Park, Mi-Ok
    • Ocean Science Journal
    • /
    • v.41 no.4
    • /
    • pp.301-313
    • /
    • 2006
  • Abundance and distribution of phytoplankton in seawater at southwestern East/Japan Sea near Gampo were investigated by HPLC analysis of photosynthetic pigments during summer of 1999. Detected photosynthetic pigments were chlorophyll a, b, $c_{1+2}$ (Chl a, Chl b, Chl $c_{1+2}$), fucoxanthin (Fuco), prasinoxanthin (Pras), zeaxanthin (Zea), 19'-butanoyloxyfucoxanthin (But-fuco) and beta-carotene (B-Car). Major carotenoid was fucoxanthin (bacillariophyte) and minor carotenoids were Pras (prasinophyte), Zea (cyanophyte) and But-fuco (chrysophyte). Chl a concentrations were in the range of $0.16-8.3\;{\mu}g/land$ subsurface chlorophyll maxima were observed at 0-10m at inshore and 30-50 m at offshore. Thermocline and nutricline tilted to the offshore direction showed a mild upwelling condition. Results from size-fraction showed that contribution from nano+picoplankton at Chl a maximum layer was increased from 18% at inshore to 69% at offshore on average. The maximum contribution from nano+picoplankton was found as 87% at St. E4. It was noteworthy that contribution from nano+picoplanktonic crysophytes and green algae to total biomass of phytoplankton was significant at offshore. Satellite images of sea surface temperature indicated that an extensive area of the East/Japan Sea showed lower temperature ($<18\;^{\circ}C$) but the enhanced Chi a patch was confined to a narrow coastal region in summer, 1999. Exceptionally high flux of low saline water from the Korea/Tsushima Strait seemed to make upwelling weak in summer of 1999 in the study area. Results of comparisons among Chi a from SeaWiFS, HPLC and fluorometric analysis showed that presence of Chi b cause underestimation of Chi a about 30% by fluorometric analysis but overestimation by satellite data about 30-75% compared to HPLC data.

Growth, secondary metabolite production and antioxidant enzyme response of Morinda citrifolia adventitious root as affected by auxin and cytokinin

  • Baque, Md. Abdullahil;Hahn, Eun-Joo;Paek, Kee-Yoeup
    • Plant Biotechnology Reports
    • /
    • v.4 no.2
    • /
    • pp.109-116
    • /
    • 2010
  • Morinda citrifolia adventitious roots were cultured in shake flasks using Murashige and Skoog medium with different types and concentrations of auxin and cytokinin. Root (fresh weight and dry weight) accumulation was enhanced at 5 $mg\;l^{-1}$ indole butyric acid (IBA) and at 7 and 9 $mg\;l^{-1}$ naphthalene acetic acid (NAA). On the other hand, 9 $mg\;l^{-1}$ NAA decreased the anthraquinone, phenolic and flavonoid contents more severely than 9 $mg\;l^{-1}$ IBA. When adventitious roots were treated with kinetin (0.1, 0.3 and 0.5 $mg\;l^{-1}$) and thidiazuron (TDZ; 0.1, 0.3 and 0.5 $mg\;l^{-1}$) in combination with 5 $mg\;l^{-1}$ IBA, fresh weight and dry weight decreased but secondary metabolite content increased. The secondary metabolite content (including 1,1-diphenyl-2-picrylhydrazyl activity) increased more in TDZ-treated than in kinetin-treated roots. Antioxidative enzymes such as catalase (CAT) and guaiacol peroxidase (G-POD), which play important roles in plant defense, also increased. A strong decrease in ascorbate peroxidase activity resulted in a high accumulation of hydrogen peroxide. This indicates that adventitious roots can grow under stress conditions with induced CAT and G-POD activities and higher accumulations of secondary metabolites. These results suggest that 5 $mg\;l^{-1}$ IBA supplementation is useful for growth and secondary metabolite production in adventitious roots of M. citrifolia.