• Title/Summary/Keyword: engineering technique

Search Result 22,457, Processing Time 0.05 seconds

A Mobile Landmarks Guide : Outdoor Augmented Reality based on LOD and Contextual Device (모바일 랜드마크 가이드 : LOD와 문맥적 장치 기반의 실외 증강현실)

  • Zhao, Bi-Cheng;Rosli, Ahmad Nurzid;Jang, Chol-Hee;Lee, Kee-Sung;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.1
    • /
    • pp.1-21
    • /
    • 2012
  • In recent years, mobile phone has experienced an extremely fast evolution. It is equipped with high-quality color displays, high resolution cameras, and real-time accelerated 3D graphics. In addition, some other features are includes GPS sensor and Digital Compass, etc. This evolution advent significantly helps the application developers to use the power of smart-phones, to create a rich environment that offers a wide range of services and exciting possibilities. To date mobile AR in outdoor research there are many popular location-based AR services, such Layar and Wikitude. These systems have big limitation the AR contents hardly overlaid on the real target. Another research is context-based AR services using image recognition and tracking. The AR contents are precisely overlaid on the real target. But the real-time performance is restricted by the retrieval time and hardly implement in large scale area. In our work, we exploit to combine advantages of location-based AR with context-based AR. The system can easily find out surrounding landmarks first and then do the recognition and tracking with them. The proposed system mainly consists of two major parts-landmark browsing module and annotation module. In landmark browsing module, user can view an augmented virtual information (information media), such as text, picture and video on their smart-phone viewfinder, when they pointing out their smart-phone to a certain building or landmark. For this, landmark recognition technique is applied in this work. SURF point-based features are used in the matching process due to their robustness. To ensure the image retrieval and matching processes is fast enough for real time tracking, we exploit the contextual device (GPS and digital compass) information. This is necessary to select the nearest and pointed orientation landmarks from the database. The queried image is only matched with this selected data. Therefore, the speed for matching will be significantly increased. Secondly is the annotation module. Instead of viewing only the augmented information media, user can create virtual annotation based on linked data. Having to know a full knowledge about the landmark, are not necessary required. They can simply look for the appropriate topic by searching it with a keyword in linked data. With this, it helps the system to find out target URI in order to generate correct AR contents. On the other hand, in order to recognize target landmarks, images of selected building or landmark are captured from different angle and distance. This procedure looks like a similar processing of building a connection between the real building and the virtual information existed in the Linked Open Data. In our experiments, search range in the database is reduced by clustering images into groups according to their coordinates. A Grid-base clustering method and user location information are used to restrict the retrieval range. Comparing the existed research using cluster and GPS information the retrieval time is around 70~80ms. Experiment results show our approach the retrieval time reduces to around 18~20ms in average. Therefore the totally processing time is reduced from 490~540ms to 438~480ms. The performance improvement will be more obvious when the database growing. It demonstrates the proposed system is efficient and robust in many cases.

KNU Korean Sentiment Lexicon: Bi-LSTM-based Method for Building a Korean Sentiment Lexicon (Bi-LSTM 기반의 한국어 감성사전 구축 방안)

  • Park, Sang-Min;Na, Chul-Won;Choi, Min-Seong;Lee, Da-Hee;On, Byung-Won
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.219-240
    • /
    • 2018
  • Sentiment analysis, which is one of the text mining techniques, is a method for extracting subjective content embedded in text documents. Recently, the sentiment analysis methods have been widely used in many fields. As good examples, data-driven surveys are based on analyzing the subjectivity of text data posted by users and market researches are conducted by analyzing users' review posts to quantify users' reputation on a target product. The basic method of sentiment analysis is to use sentiment dictionary (or lexicon), a list of sentiment vocabularies with positive, neutral, or negative semantics. In general, the meaning of many sentiment words is likely to be different across domains. For example, a sentiment word, 'sad' indicates negative meaning in many fields but a movie. In order to perform accurate sentiment analysis, we need to build the sentiment dictionary for a given domain. However, such a method of building the sentiment lexicon is time-consuming and various sentiment vocabularies are not included without the use of general-purpose sentiment lexicon. In order to address this problem, several studies have been carried out to construct the sentiment lexicon suitable for a specific domain based on 'OPEN HANGUL' and 'SentiWordNet', which are general-purpose sentiment lexicons. However, OPEN HANGUL is no longer being serviced and SentiWordNet does not work well because of language difference in the process of converting Korean word into English word. There are restrictions on the use of such general-purpose sentiment lexicons as seed data for building the sentiment lexicon for a specific domain. In this article, we construct 'KNU Korean Sentiment Lexicon (KNU-KSL)', a new general-purpose Korean sentiment dictionary that is more advanced than existing general-purpose lexicons. The proposed dictionary, which is a list of domain-independent sentiment words such as 'thank you', 'worthy', and 'impressed', is built to quickly construct the sentiment dictionary for a target domain. Especially, it constructs sentiment vocabularies by analyzing the glosses contained in Standard Korean Language Dictionary (SKLD) by the following procedures: First, we propose a sentiment classification model based on Bidirectional Long Short-Term Memory (Bi-LSTM). Second, the proposed deep learning model automatically classifies each of glosses to either positive or negative meaning. Third, positive words and phrases are extracted from the glosses classified as positive meaning, while negative words and phrases are extracted from the glosses classified as negative meaning. Our experimental results show that the average accuracy of the proposed sentiment classification model is up to 89.45%. In addition, the sentiment dictionary is more extended using various external sources including SentiWordNet, SenticNet, Emotional Verbs, and Sentiment Lexicon 0603. Furthermore, we add sentiment information about frequently used coined words and emoticons that are used mainly on the Web. The KNU-KSL contains a total of 14,843 sentiment vocabularies, each of which is one of 1-grams, 2-grams, phrases, and sentence patterns. Unlike existing sentiment dictionaries, it is composed of words that are not affected by particular domains. The recent trend on sentiment analysis is to use deep learning technique without sentiment dictionaries. The importance of developing sentiment dictionaries is declined gradually. However, one of recent studies shows that the words in the sentiment dictionary can be used as features of deep learning models, resulting in the sentiment analysis performed with higher accuracy (Teng, Z., 2016). This result indicates that the sentiment dictionary is used not only for sentiment analysis but also as features of deep learning models for improving accuracy. The proposed dictionary can be used as a basic data for constructing the sentiment lexicon of a particular domain and as features of deep learning models. It is also useful to automatically and quickly build large training sets for deep learning models.

Incorporating Social Relationship discovered from User's Behavior into Collaborative Filtering (사용자 행동 기반의 사회적 관계를 결합한 사용자 협업적 여과 방법)

  • Thay, Setha;Ha, Inay;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.1-20
    • /
    • 2013
  • Nowadays, social network is a huge communication platform for providing people to connect with one another and to bring users together to share common interests, experiences, and their daily activities. Users spend hours per day in maintaining personal information and interacting with other people via posting, commenting, messaging, games, social events, and applications. Due to the growth of user's distributed information in social network, there is a great potential to utilize the social data to enhance the quality of recommender system. There are some researches focusing on social network analysis that investigate how social network can be used in recommendation domain. Among these researches, we are interested in taking advantages of the interaction between a user and others in social network that can be determined and known as social relationship. Furthermore, mostly user's decisions before purchasing some products depend on suggestion of people who have either the same preferences or closer relationship. For this reason, we believe that user's relationship in social network can provide an effective way to increase the quality in prediction user's interests of recommender system. Therefore, social relationship between users encountered from social network is a common factor to improve the way of predicting user's preferences in the conventional approach. Recommender system is dramatically increasing in popularity and currently being used by many e-commerce sites such as Amazon.com, Last.fm, eBay.com, etc. Collaborative filtering (CF) method is one of the essential and powerful techniques in recommender system for suggesting the appropriate items to user by learning user's preferences. CF method focuses on user data and generates automatic prediction about user's interests by gathering information from users who share similar background and preferences. Specifically, the intension of CF method is to find users who have similar preferences and to suggest target user items that were mostly preferred by those nearest neighbor users. There are two basic units that need to be considered by CF method, the user and the item. Each user needs to provide his rating value on items i.e. movies, products, books, etc to indicate their interests on those items. In addition, CF uses the user-rating matrix to find a group of users who have similar rating with target user. Then, it predicts unknown rating value for items that target user has not rated. Currently, CF has been successfully implemented in both information filtering and e-commerce applications. However, it remains some important challenges such as cold start, data sparsity, and scalability reflected on quality and accuracy of prediction. In order to overcome these challenges, many researchers have proposed various kinds of CF method such as hybrid CF, trust-based CF, social network-based CF, etc. In the purpose of improving the recommendation performance and prediction accuracy of standard CF, in this paper we propose a method which integrates traditional CF technique with social relationship between users discovered from user's behavior in social network i.e. Facebook. We identify user's relationship from behavior of user such as posts and comments interacted with friends in Facebook. We believe that social relationship implicitly inferred from user's behavior can be likely applied to compensate the limitation of conventional approach. Therefore, we extract posts and comments of each user by using Facebook Graph API and calculate feature score among each term to obtain feature vector for computing similarity of user. Then, we combine the result with similarity value computed using traditional CF technique. Finally, our system provides a list of recommended items according to neighbor users who have the biggest total similarity value to the target user. In order to verify and evaluate our proposed method we have performed an experiment on data collected from our Movies Rating System. Prediction accuracy evaluation is conducted to demonstrate how much our algorithm gives the correctness of recommendation to user in terms of MAE. Then, the evaluation of performance is made to show the effectiveness of our method in terms of precision, recall, and F1-measure. Evaluation on coverage is also included in our experiment to see the ability of generating recommendation. The experimental results show that our proposed method outperform and more accurate in suggesting items to users with better performance. The effectiveness of user's behavior in social network particularly shows the significant improvement by up to 6% on recommendation accuracy. Moreover, experiment of recommendation performance shows that incorporating social relationship observed from user's behavior into CF is beneficial and useful to generate recommendation with 7% improvement of performance compared with benchmark methods. Finally, we confirm that interaction between users in social network is able to enhance the accuracy and give better recommendation in conventional approach.

Content-based Recommendation Based on Social Network for Personalized News Services (개인화된 뉴스 서비스를 위한 소셜 네트워크 기반의 콘텐츠 추천기법)

  • Hong, Myung-Duk;Oh, Kyeong-Jin;Ga, Myung-Hyun;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.57-71
    • /
    • 2013
  • Over a billion people in the world generate new news minute by minute. People forecasts some news but most news are from unexpected events such as natural disasters, accidents, crimes. People spend much time to watch a huge amount of news delivered from many media because they want to understand what is happening now, to predict what might happen in the near future, and to share and discuss on the news. People make better daily decisions through watching and obtaining useful information from news they saw. However, it is difficult that people choose news suitable to them and obtain useful information from the news because there are so many news media such as portal sites, broadcasters, and most news articles consist of gossipy news and breaking news. User interest changes over time and many people have no interest in outdated news. From this fact, applying users' recent interest to personalized news service is also required in news service. It means that personalized news service should dynamically manage user profiles. In this paper, a content-based news recommendation system is proposed to provide the personalized news service. For a personalized service, user's personal information is requisitely required. Social network service is used to extract user information for personalization service. The proposed system constructs dynamic user profile based on recent user information of Facebook, which is one of social network services. User information contains personal information, recent articles, and Facebook Page information. Facebook Pages are used for businesses, organizations and brands to share their contents and connect with people. Facebook users can add Facebook Page to specify their interest in the Page. The proposed system uses this Page information to create user profile, and to match user preferences to news topics. However, some Pages are not directly matched to news topic because Page deals with individual objects and do not provide topic information suitable to news. Freebase, which is a large collaborative database of well-known people, places, things, is used to match Page to news topic by using hierarchy information of its objects. By using recent Page information and articles of Facebook users, the proposed systems can own dynamic user profile. The generated user profile is used to measure user preferences on news. To generate news profile, news category predefined by news media is used and keywords of news articles are extracted after analysis of news contents including title, category, and scripts. TF-IDF technique, which reflects how important a word is to a document in a corpus, is used to identify keywords of each news article. For user profile and news profile, same format is used to efficiently measure similarity between user preferences and news. The proposed system calculates all similarity values between user profiles and news profiles. Existing methods of similarity calculation in vector space model do not cover synonym, hypernym and hyponym because they only handle given words in vector space model. The proposed system applies WordNet to similarity calculation to overcome the limitation. Top-N news articles, which have high similarity value for a target user, are recommended to the user. To evaluate the proposed news recommendation system, user profiles are generated using Facebook account with participants consent, and we implement a Web crawler to extract news information from PBS, which is non-profit public broadcasting television network in the United States, and construct news profiles. We compare the performance of the proposed method with that of benchmark algorithms. One is a traditional method based on TF-IDF. Another is 6Sub-Vectors method that divides the points to get keywords into six parts. Experimental results demonstrate that the proposed system provide useful news to users by applying user's social network information and WordNet functions, in terms of prediction error of recommended news.

Analysis and Evaluation of Frequent Pattern Mining Technique based on Landmark Window (랜드마크 윈도우 기반의 빈발 패턴 마이닝 기법의 분석 및 성능평가)

  • Pyun, Gwangbum;Yun, Unil
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.101-107
    • /
    • 2014
  • With the development of online service, recent forms of databases have been changed from static database structures to dynamic stream database structures. Previous data mining techniques have been used as tools of decision making such as establishment of marketing strategies and DNA analyses. However, the capability to analyze real-time data more quickly is necessary in the recent interesting areas such as sensor network, robotics, and artificial intelligence. Landmark window-based frequent pattern mining, one of the stream mining approaches, performs mining operations with respect to parts of databases or each transaction of them, instead of all the data. In this paper, we analyze and evaluate the techniques of the well-known landmark window-based frequent pattern mining algorithms, called Lossy counting and hMiner. When Lossy counting mines frequent patterns from a set of new transactions, it performs union operations between the previous and current mining results. hMiner, which is a state-of-the-art algorithm based on the landmark window model, conducts mining operations whenever a new transaction occurs. Since hMiner extracts frequent patterns as soon as a new transaction is entered, we can obtain the latest mining results reflecting real-time information. For this reason, such algorithms are also called online mining approaches. We evaluate and compare the performance of the primitive algorithm, Lossy counting and the latest one, hMiner. As the criteria of our performance analysis, we first consider algorithms' total runtime and average processing time per transaction. In addition, to compare the efficiency of storage structures between them, their maximum memory usage is also evaluated. Lastly, we show how stably the two algorithms conduct their mining works with respect to the databases that feature gradually increasing items. With respect to the evaluation results of mining time and transaction processing, hMiner has higher speed than that of Lossy counting. Since hMiner stores candidate frequent patterns in a hash method, it can directly access candidate frequent patterns. Meanwhile, Lossy counting stores them in a lattice manner; thus, it has to search for multiple nodes in order to access the candidate frequent patterns. On the other hand, hMiner shows worse performance than that of Lossy counting in terms of maximum memory usage. hMiner should have all of the information for candidate frequent patterns to store them to hash's buckets, while Lossy counting stores them, reducing their information by using the lattice method. Since the storage of Lossy counting can share items concurrently included in multiple patterns, its memory usage is more efficient than that of hMiner. However, hMiner presents better efficiency than that of Lossy counting with respect to scalability evaluation due to the following reasons. If the number of items is increased, shared items are decreased in contrast; thereby, Lossy counting's memory efficiency is weakened. Furthermore, if the number of transactions becomes higher, its pruning effect becomes worse. From the experimental results, we can determine that the landmark window-based frequent pattern mining algorithms are suitable for real-time systems although they require a significant amount of memory. Hence, we need to improve their data structures more efficiently in order to utilize them additionally in resource-constrained environments such as WSN(Wireless sensor network).

A 1280-RGB $\times$ 800-Dot Driver based on 1:12 MUX for 16M-Color LTPS TFT-LCD Displays (16M-Color LTPS TFT-LCD 디스플레이 응용을 위한 1:12 MUX 기반의 1280-RGB $\times$ 800-Dot 드라이버)

  • Kim, Cha-Dong;Han, Jae-Yeol;Kim, Yong-Woo;Song, Nam-Jin;Ha, Min-Woo;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.1
    • /
    • pp.98-106
    • /
    • 2009
  • This work proposes a 1280-RGB $\times$ 800-Dot 70.78mW 0.l3um CMOS LCD driver IC (LDI) for high-performance 16M-color low temperature poly silicon (LTPS) thin film transistor liquid crystal display (TFT-LCD) systems such as ultra mobile PC (UMPC) and mobile applications simultaneously requiring high resolution, low power, and small size at high speed. The proposed LDI optimizes power consumption and chip area at high resolution based on a resistor-string based architecture. The single column driver employing a 1:12 MUX architecture drives 12 channels simultaneously to minimize chip area. The implemented class-AB amplifier achieves a rail-to-rail operation with high gain and low power while minimizing the effect of offset and output deviations for high definition. The supply- and temperature-insensitive current reference is implemented on chip with a small number of MOS transistors. A slew enhancement technique applicable to next-generation source drivers, not implemented on this prototype chip, is proposed to reduce power consumption further. The prototype LDI implemented in a 0.13um CMOS technology demonstrates a measured settling time of source driver amplifiers within 1.016us and 1.072us during high-to-low and low-to-high transitions, respectively. The output voltage of source drivers shows a maximum deviation of 11mV. The LDI with an active die area of $12,203um{\times}1500um$ consumes 70.78mW at 1.5V/5.5V.

Study of Coherent High-Power Electromagnetic Wave Generation Based on Cherenkov Radiation Using Plasma Wakefield Accelerator with Relativistic Electron Beam in Vacuum (진공 내 상대론적인 영역의 전자빔을 이용한 플라즈마 항적장 가속기 기반 체렌코프 방사를 통한 결맞는 고출력 전자파 발생 기술 연구)

  • Min, Sun-Hong;Kwon, Ohjoon;Sattorov, Matlabjon;Baek, In-Keun;Kim, Seontae;Hong, Dongpyo;Jang, Jungmin;Bhattacharya, Ranajoy;Cho, Ilsung;Kim, Byungsu;Park, Chawon;Jung, Wongyun;Park, Seunghyuk;Park, Gun-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.6
    • /
    • pp.407-410
    • /
    • 2018
  • As the operating frequency of an electromagnetic wave increases, the maximum output and wavelength of the wave decreases, so that the size of the circuit cannot be reduced. As a result, the fabrication of a circuit with high power (of the order of or greater than kW range) and terahertz wave frequency band is limited, due to the problem of circuit size, to the order of ${\mu}m$ to mm. In order to overcome these limitations, we propose a source design technique for 0.1 THz~0.3 GW level with cylindrical shape (diameter ~2.4 cm). Modeling and computational simulations were performed to optimize the design of the high-power electromagnetic sources based on Cherenkov radiation generation technology using the principle of plasma wakefield acceleration with ponderomotive force and artificial dielectrics. An effective design guideline has been proposed to facilitate the fabrication of high-power terahertz wave vacuum devices of large diameter that are less restricted in circuit size through objective verification.

Optimization of Growth Medium and Poly-$\beta$-hydroxybutyric Acid Production from Methanol in Methylobacterium organophilum (메탄올로부터 Methylobacterium organophilum에 의한 Poly-$\beta$-hydroxybutyric Acid의 생산과 배지성분의 최적화)

  • Choi, Joon-H;Kim, Jung H.;M. Daniel;J.M. Lebeault
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.4
    • /
    • pp.392-396
    • /
    • 1989
  • Methylobacterium organophilum, a facultative methylotroph was cultivated on a methanol as a sole carbon and energy source. The cell growth was affected by the various components of minimal synthetic medium and the medium composition was optimized with 0.5% (v/v) methanol at pH 6.8 and at 3$0^{\circ}C$. The maximum specific growth rate of M. organophilum was achieved to 0.26 hr$^{-1}$ in the optimized medium which has following composition: Methanol, 0.5% (v/v):(NH$_4$)$_2$SO$_4$, 1.0g/l:KH$_2$PO$_4$, 2.13g/l:KH$_2$PO$_4$, 1.305g/ι:MgSO$_4$.7$H_2O$. 45g/l and trace elements (CaCl$_2$.2$H_2O$, 3.3mg:FeSO$_4$.7$H_2O$, 1.3mg:MnSO$_4$.4$H_2O$, 130$\mu\textrm{g}$:ZnSO$_4$.5$H_2O$, 40$\mu\textrm{g}$:Na$_2$MoO$_4$.2$H_2O$, 40$\mu\textrm{g}$:CoCl$_2$.6$H_2O$, 40$\mu\textrm{g}$:H$_3$BO$_3$, 30$\mu\textrm{g}$ per liter). By the limitation of nitrogen and deficiency of Mn$^{+2}$ or Fe$^{+2}$, the cell growth was significantly repressed. Methanol greatly repressed the cell growth and the complete inhibition was observed at concentration above 4% (v/v). In order to overcome the methanol inhibition and to prevent the methanol limitation, intermittent feeding of methanol was conducted by a D.O.-stat technique. PHB production by M. organophilum was stimulated by deficiency of nutrients such as NH$_{4}^{+}$, SO$_{4}^{-2}$, $Mg^{+2}$, $K^{+}$, or PO$_{4}^{-3}$ in the medium. The maximum PHB content was obtained as 58% of dry cell weight under deficiency of potassium ion in the optimized synthetic medium.

  • PDF

A Polarization-based Frequency Scanning Interferometer and the Measurement Processing Acceleration based on Parallel Programing (편광 기반 주파수 스캐닝 간섭 시스템 및 병렬 프로그래밍 기반 측정 고속화)

  • Lee, Seung Hyun;Kim, Min Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.253-263
    • /
    • 2013
  • Frequency Scanning Interferometry(FSI) system, one of the most promising optical surface measurement techniques, generally results in superior optical performance comparing with other 3-dimensional measuring methods as its hardware structure is fixed in operation and only the light frequency is scanned in a specific spectral band without vertical scanning of the target surface or the objective lens. FSI system collects a set of images of interference fringe by changing the frequency of light source. After that, it transforms intensity data of acquired image into frequency information, and calculates the height profile of target objects with the help of frequency analysis based on Fast Fourier Transform(FFT). However, it still suffers from optical noise on target surfaces and relatively long processing time due to the number of images acquired in frequency scanning phase. 1) a Polarization-based Frequency Scanning Interferometry(PFSI) is proposed for optical noise robustness. It consists of tunable laser for light source, ${\lambda}/4$ plate in front of reference mirror, ${\lambda}/4$ plate in front of target object, polarizing beam splitter, polarizer in front of image sensor, polarizer in front of the fiber coupled light source, ${\lambda}/2$ plate between PBS and polarizer of the light source. Using the proposed system, we can solve the problem of fringe image with low contrast by using polarization technique. Also, we can control light distribution of object beam and reference beam. 2) the signal processing acceleration method is proposed for PFSI, based on parallel processing architecture, which consists of parallel processing hardware and software such as Graphic Processing Unit(GPU) and Compute Unified Device Architecture(CUDA). As a result, the processing time reaches into tact time level of real-time processing. Finally, the proposed system is evaluated in terms of accuracy and processing speed through a series of experiment and the obtained results show the effectiveness of the proposed system and method.

Effect of Light-Quality Control on Growth of Ledebouriella seseloides Grown in Plant Factory of an Artificial Light Type (인공광 식물공장내 광질 제어가 방풍나물 생장에 미치는 영향)

  • Heo, Jeong-Wook;Kim, Dong-Eok;Han, Kil-Su;Kim, Sook-Jong
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.3
    • /
    • pp.193-200
    • /
    • 2013
  • BACKGROUND: Plant factory system of an artificial light type using Light-Emitting Diodes (LEDs), fluorescent light, or metal halide lamp instead of sun light is an ultimated method for plant production without any pesticides regardless of seasonal changes. The plant factory is also completely isolated from outside environmental conditions such as a light, temperature, or humidity compared to conventional greenhouse. Light-environment control such as a quality or quantity in the plant factory system is essential for improving the growth and development of plant species. However, there was little report that the effects of various light qualities provided by LEDs on Ledebouriella seseloides growth under the plant factory system. METHODS AND RESULTS: Ledebouriella seseloides seedlings transplanted at urethane sponge were grown in the plant factory system of a horizontal type with LED artificial lights for 90 days. Yamazaki solution for hydroponic culture of the seedlings was regularly irrigated by the deep flow technique (DFT) system on the culture gutters. Electrical Conductivity (EC) and pH of the solution was recorded at 1.4 ds/m and 5.8 in average, respectively during the experimental period. Number of unfolded leaves, leaf length, shoot fresh and dry weight of the seedlings were three times measured in every 30 days after beginning of the experiment. Blue LEDs, red LEDs, and fluorescent lights inside the plant factory were used as light sources. Conventional fluorescent lamps were considered as a control. In all the treatment, light intensity was maintained at $100{\mu}mol/m^2/s$ on the culture bed. Fresh weight of the seedlings was 3.7 times greater in the treatment with the mixture radiation of fluorescent light and blue+red LEDs (1:3 in energy ratio; Treatment FLBR13) than in fluorescent light treatment (Treatment FL). In FLBR13 treatment, dry weight per seedling was two times greater than in FL or BR11 treatment of blue+red LEDs (1:3 in energy ratio; Treatment BR11) during the culture period. Increasing in number of unfolded leaves was also significantly affected by the FLBR13 treatment comparing with BR11 treatment. CONCLUSION(S): Hydroponic culture of Ledebouriella seseloides seedlings was successfully achieved in the plant factory system with mixture lights of blue, red LEDs and fluorescent lights. Shoot growth of the seedlings was significantly promoted by the FLBR13 with the mixture radiation of fluorescent light, blue, and red LEDs under 1:3 mixture ratio of blue and red LEDs during the experimental period compared to conventional light conditions.