• Title/Summary/Keyword: engineering site

Search Result 7,646, Processing Time 0.039 seconds

MMS Data Accuracy Evaluation by Distance of Reference Point for Construction of Road Geospatial Information (도로공간정보 구축을 위한 기준점 거리 별 MMS 성과물의 정확도 평가)

  • Lee, Keun Wang;Park, Joon Kyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.549-554
    • /
    • 2021
  • Precise 3D road geospatial information is the basic infrastructure for autonomous driving and is essential data for safe autonomous driving. MMS (Mobile Mapping System) is being used as equipment for road spatial information construction, and related research is being conducted. However, there are insufficient studies to analyze the effect of the baseline reference point distance, which is an important factor in the accuracy of the MMS outcome, on the accuracy of the outcome. Therefore, in this study, the accuracy of the data acquired using MMS by reference point distance was analyzed. Point cloud data was constructed using MMS for the road in the study site. For data processing, 4 data were constructed considering the distance from the reference point for MMS data, and the accuracy was analyzed by comparing the results of 12 checkpoints for accuracy evaluation. The accuracy of the MMS data showed a difference of -0.09 m to 0.11 m in the horizontal direction and 0.04 m to 0.19 m in the height direction. The error in the vertical direction was larger than that in the horizontal direction, and it was found that the accuracy decreased as the distance from the reference point increased. In addition, as the length of the road increases, the distance from the reference point may vary, so additional research is needed. If the accuracy evaluation of the method using multiple reference points is made in the future, it will be possible to present an effective method of using reference points for the construction of precise road spatial information.

A Study on Countermeasures for Risk Factors Through Risk Analysis of Earthwork (흙막이공의 리스크 분석을 통한 리스크 요인별 대응 방안에 관한 연구)

  • Jeon, Byung Ju;Isah, Muritala Adebayo;Kim, Hyun Bee;Lee, Yang Gyu;Kim, Byung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.681-688
    • /
    • 2022
  • According to a recent study, most construction companies in Korea do not manage risk effectively, and it is judged that the risk management system needs to be improved. In addition, most risk-related studies deal with risks from a macroscopic perspective, and there are few studies dealing with process risks at the project construction stage. Therefore, this study tried to suggest a risk response plan through analysis and classification of risk factors that may occur in retaining work among process risks. To this end, a workshop was held for risk experts to identify and analyze risks that may occur during the construction of retaining work for apartments. As a result of the study, it was expected that savings of KRW 4.97 billion would be possible in the 95 % confidence interval, and the maximum possible cost was reduced from KRW 15 billion to about KRW 10 billion. Based on the risk reduction ratio, it was found that risks that can be reduced without any special input cost, risks with large effects in response to risks, and risks with insignificant effects were found. Therefore, using the types and risk factors presented in this study as guides, it is expected that it will be helpful in successfully operating the project if an appropriate response strategy is prepared and systematically responded to the site conditions.

Empirical Study of the PLSP (Priority Land and Signal Preemption for Emergency Vehicles (긴급차량의 우선차로 및 우선신호 도입효과 -청주시를 대상으로-)

  • Lee, Jun;Ham, Seung Hee;Lee, Sang Jo
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.650-657
    • /
    • 2020
  • Purpose: In this study, the effectiveness of pilot project of PLSP (Priority Lane and Signal Preference) system, which was operated in Cheongju City, was analyzed. Method: The priority signal was operated by a police officer switching to a blue signal when approaching a fire truck through CCTV, and the priority lane of emergency vehicles was displayed on the road to enable preferential traffic. VISSIM simulation analysis was performed for the 1.2km section (3.8km) of the pilot project section and vehicle data was analyzed for some of the test operation sections. Result: Simulation analysis shows that the moving speed of the emergency vehicle can be increased by 42 km/h with the introduction of PLSP, which can be increased by approximately twice the speed. Travel time was reduced by about 3 minutes, and considerable improvements of 69% compared to cities that are not operating was analyzed. The pilot operation of Cheongju City showed a time-shortening effect of about two minutes on average, with the average time reaching 4 minutes and 14 seconds in the first period and the average time reaching 5 minutes and 40 seconds in the second period. Conclusion: The system has been shown to be effective in minimizing time-to-site arrival of emergency vehicles.

Deriving AR Technologies and Contents to Establish a Safety Management System in Railway Infrastructure (철도 인프라 안전 관리 시스템 구축을 위한 AR 기술 및 콘텐츠 도출)

  • Jeon, Hae-In;Yu, Young-Su;Koo, Bon-Sang;Seo, Hyeong-Lyel;Kim, Ji-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.427-438
    • /
    • 2022
  • With the recent growing importance over safety management the need for advanced and technical approaches for on-site safety inspection methods has increased. Railway construction is subject to its own particular set of temporal and spatial challenges due to its unique facilities and equipment. This study aimed to investigate the field characteristics of railway infrastructure and improve the conventional field safety management methods by identifying the most appropriate features of AR technology. Group interviews and surveys were conducted with field safety experts to derive the major problems and inspection needs. Subsequently, various features of AR, such as BIM model projection, and remote conferencing, were investigated to determine their applicability to address safety issues. As a result, four problems in the current safety management process, such as 'lack of time due to the conventional inspection method and inspection of areas that are difficult to access', and three major inspection types, such as 'observance of work procedures, status of installation, adequate dimensional spacing', were identified to be improved when adopting AR based techniques. Furthermore, AR technology utilizing plans to solve safety inspection problems and effectively manage major inspection types were proposed, and a follow up survey was conducted with the same field safety experts to derive the priority of technology development.

Evaluating Implementation Rate of Wildlife Mitigation Measures in the Environmental Impact Assessment (환경영향평가에서 동물상 영향 저감방안 이행현황 평가 - 도시 및 도로 개발사업을 중심으로 -)

  • Ji-Hoon, Lee;Eun-Sub, Kim;Yong-Won, Mo;Dong-Kun, Lee
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.6
    • /
    • pp.359-368
    • /
    • 2022
  • It is essential to increase the implementation rate in order to increase the effectiveness of mitigation measures that can mitigate the negative impact of development projects. In the case of Environmental Impact Assessment (EIA),research on the implementation evaluation of development projects is insufficient, even though the effectiveness of mitigation measures has been steadily raised. Therefore, this study evaluated the implementation rate of the mitigation measures and identified the cause of the difference in the implementation rate for each mitigation measures in order to understand the current status of the ecological mitigation measures. The implementation rate of urban and road development projects mitigation measures was 56.0% and 64.4%, respectively. the implementation rate of 'Monitoring' mitigation measures was the highest in all development project. But, 'Habitat creation' and 'Accident prevention measures' were low. In addition, it was found that the implementation rate of the mitigation measures were high when the contents of the mitigation measure described in the report were specific. Through this study, it was found that in order to increase the implementation rate of the EIA ecological environment animal mitigation measures, it is necessary to reflect the environmental and geographical characteristics of the target site in detail. Furthermore, it is judged that this study can be used as a basic basis for enhancing the effectiveness of the EIA system introduced to mitigate the negative impact on the environment.

Estimation Method of the Amount of Demolition Waste through Automated Calculation of Volumetric Spaces using Drones (드론 활용 체적산출 자동화를 통한 해체 폐기물량 예측기법에 관한 연구)

  • Ryu, Jung-Rim;Kim, Hye-Ri;Park, Won-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.681-688
    • /
    • 2022
  • In this study, the process of drone photography, automatic volume calculation, total floor area conversion, and waste calculation was constructed as a QGIS plug-in to predict the demolition waste (DW) generated in an aged area where drawing information or building information is uncertain. Through a case study, the high consistency between the automatically calculated volume using the drone and the BIM volume based on the field measurement was confirmed. Field application was carried out for the planned demolition work site, and the consistency between the drone-based volume and the actual measurement-BIM-based volume was reconfirmed. The waste generation unit was applied and the amount of DW was calculated by setting the floor height and building type, and the entire process was completed within 6 hours. Although the difference between building information and building objects through drones occurred according to the setting of temporary structures, loads, and floor heights, it was found that the actual amount of DW was generated more than the initial estimate. It is expected that measures to improve the accuracy of volume and floor area conversion will be required through case studies in the future.

Analysis of Weathering Sensitivity by Swelling of Domestic Highway Sites (국내 고속도로현장의 스웰링에 의한 풍화민감도 분석)

  • Jang, Seokmyung;Han, Heuisoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.3
    • /
    • pp.15-22
    • /
    • 2022
  • This study aims to observe the swelling representative rocks in Korea and to suggest improvements in the use of test methods and prior analysis in relation to the weathering of rocks. The swelling test and analysis were performed on the drilling cores obtained for the ground investigation at the domestic highway construction site. For the method of determining the absorption expansion index of rocks, the method proposed in "Standard Methods for Sample Collection and Specimen Preparation" of ISRM and Korean Rock Engineers Standard Rock Test Method was used. The specimen for the measurement of the expansion displacement was cylindrical with a height of 10 cm and a diameter of 5 cm. The existing swelling analysis method evaluates the sensitivity to weathering by using the maximum expansion displacement, but since the classification by bedrock grade is unclear, it is reasonable to use the rate of change of the expansion displacement according to the immersion time. It is necessary to conduct an experiment to distinguish between weathering and fault deterioration. In addition, long-term weathering prediction technology for each cancer type is needed through the expansion displacement analysis of the chemical weathering stage.

A study on the rainfall-runoff reduction efficiency on each design rainfall for the green infrastructure-baesd stormwater management (그린인프라 기반 빗물 관리를 위한 설계강우량별 강우-유출저감 효율성 분석 연구)

  • Kim, Byungsung;Kim, Jaemoon;Lee, Sangjin
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.8
    • /
    • pp.613-621
    • /
    • 2022
  • Due to the global climate change, the rainfall volume and frequency on the Korean Peninsula are predicted to increase at the end of the 21st century. In addition, impervious surface areas have increased due to rapid urbanization which has caused the urban water cycle to deteriorate. Green Infrastructure (GI) researches have been conducted to improve the water cycle soundness; the efficiency of this technique has been verified through various studies. However, there are still no suitable GI design guidelines for this aspect. Therefore, the rainfall scenarios are set up for each percentile (60, 70, 80, 90) based on the volume and frequency analysis using 10-year rainfall data (Busan Meteorological Station). After determining the GI areas for each scenario, the runoff reduction characteristics are analyzed based on Storm Water Management Model (SWMM) 10-year rainfall-runoff-simulations. The total runoff reduction efficiency for each GI areas are computed to have a range of 13.1~52.1%. As a results of the quantitative analysis, the design rainfall for GI is classified into the 80~85 percentile in the study site.

Development of 3D Underground Information Construction and Visualization System Based on IUGIM (지하공간통합지도 기반 3차원 지하정보 구축 및 가시화시스템 개발)

  • Kang, Kyung Nam;Kim, Wooram;Hwang, Seung Hyun;An, Joon Sang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.497-505
    • /
    • 2021
  • Due to recent underground space accidents, are a frequent occurence in Korea, the government established the basic plan for the construction of the IUGIM (Integrated Underground Geospatial Information Map) in 2015 as a measure for safety management of underground spaces. The development of IUGIM was partially completed as of 2021. The underground space management entity and related organizations are utilizing it. This study is being carried out as part of a plan to improve the usability of IUGIM, and to build a visualization system that compares real-time field data with stored data. A system, equipped with a visualization function for borehole data and 6 types of underground facilities built and managed on IUGIM; a tool capable of comparative analysis with real-time data measured in the field, is being built. The 6 types of underground facilities are water supply pipe, sewage pipe, power pipe, gas pipe, communication pipe, and heating pipe. The completed system was demonstrated at three locations in Seocho-gu, Gangnam-gu in Seoul. The field demonstration was carried out by accessing the mobile center and downloading IUGIM data, visualizing IUGIM data (surface creation, borehole information, underground facilities), and visualizing the GPR(Ground Penetrating Radar)-based data acquired at the field. As a result of the empirical results of IUGIM data and GPR-based field data, it was judged to be suitable. As a result of this study, it is judged that it can be helpful for safe construction at the excavation site.

A Study on the Correlation between the Building Perimeter and Safety Management Cost (건물의 외주길이와 안전관리비의 상관관계 분석에 관한 연구)

  • Han, Bum-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.4
    • /
    • pp.359-370
    • /
    • 2022
  • Despite continuous efforts to reduce on-site safety accidents, the construction industry remains a high-risk sector with a high rate of fatal accidents. Design for Safety(DFS), which manages safety risk factors at the design stage, is being used as a method to lower the construction safety accident rate. However, due to limited knowledge, designers are unaware of the design-results risks during the different of the project lifecycle, including construction, operation, and maintenance. Effective DFS can be conducted if the designer understands the effect of the building shape on the safety accident rate and corresponding safety management cost(SMC). The cost of safety facilities such as fall prevention nets and safety fences will vary depending on the shape of the building. This study analyzes the outer perimeter length's impact on SMC. Following the data collection from 21 projects for this study, an analysis was conducted using the independent variables of the building perimeter(BP), building shape factor(BSF), and building area(BA), the dependent variable of SMC. The correlation R2 was found to be 0.876, 0.801 and 0.792 between the BP and SMC, BSF and SMC, BA and SMC, respectively, indicating that these factors were closely related.