• Title/Summary/Keyword: engineering site

Search Result 7,648, Processing Time 0.034 seconds

Proposal for the list of potential radionuclides of interest during NPP site characterization or final status surveys

  • Seo, Hyung-Woo;Oh, Jae Yong;Shin, Weon Gyu
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.234-243
    • /
    • 2021
  • In the research or project planning for the decommissioning of a nuclear power plant, one of several preparations will be the establishment of a list of potential radionuclides to be considered at the time of characterization or final status surveys. Reliable data for selection of potential radionuclides during the transition period to prepare for decommissioning will depend heavily on historical data at the site or, where possible, sampling analysis. However, during the transition period, direct sampling can be challenging, depending on the circumstances of the site or national regulation. A methodology of selecting potential radionuclides for nuclear facility sites which largely consists of three major processes: production of initial list of radionuclides, selection of the insignificant radionuclide that will be eliminated, and consideration of site characterization or sampling. For developing a preliminary list of potential radionuclides for Kori Unit 1 decommissioning, the list of initial radionuclides was made referring to the technical documents applied at decommissioned NPPs in the U.S and additional reference materials applied until the operation of NPPs in Korea. For the screening of insignificant radionuclides, we applied criterion of less than 0.1% of the amount of radioactivity inventory and confirmed the dose fraction using the RESRAD code. The final suit of radionuclides was established, which should be supplemented by reflecting site characterization and sampling process in the future. Thus, the methodology and results for the selection of potential radionuclides suggested in this paper can give an insight as a future reference to deriving DCGLs in relation to site remediation of decommissioning nuclear plants.

UAV-based Construction Site Monitoring and Analysis System Development for Civil Engineering Management (토목현장에서의 무인비행장치 기반 현장정보 취득 및 분석 시스템 개발)

  • Kim, Changyoon;Youn, Junhee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.549-557
    • /
    • 2022
  • Due to harsh conditions of construction site, understanding of current feature of terrain and other infrastructures is critical issue for site managers. However, because of difficulties in acquiring the geographical information of the construction sites such as large sites and limited capability of construction workers, comprehensive site investigation of current feature of construction site is not an easy task for construction managers. To address these circumstances of construction sites, this study deduce difficulties and applicabilities of unmanned aerial vehicle in the area of construction site management. To confirm applicability of UAV in civil construction project, case study have been conducted on the road construction project. The result of case study proved that the developed system is one of promising technologies that has been studied in construction site management. To improve applicability of UAV for construction and process management information, law and technical issues will be an important area of future study.

Characterization of an Animal Carcass Disposal Site using Electrical Resistivity Survey (전기비저항 탐사를 이용한 가축사체 매몰지 특성 분석)

  • Ko, Jin-Suk;Kim, Bong-Ju;Choi, Nag-Choul;Kim, Song-Bae;Park, Jeong-Ann;Park, Cheon-Young
    • The Journal of Engineering Geology
    • /
    • v.22 no.4
    • /
    • pp.409-416
    • /
    • 2012
  • In this study, an electrical resistivity survey and a drilling investigation were conducted at an animal carcass disposal site. Chemical analysis of leachate collected from the site was also performed (sampling times: May 2011 and June 2012). Five lines of dipole-dipole electrical resistivity surveys were carried out, along with drilling investigations at 3 points within the disposal areas and 11 points near the disposal site. Two-dimensional inverse modeling of the collected resistivity data was performed to evaluate the properties (size, depth, and form) of the disposal site. Leachate analysis showed that pH of leachate decreased from 7.4 to 6.7, while Eh changed from -358 mV to -48 mV over time. In addition, dissolved ions increased due to the progression of carcass decomposition. Results of the electrical resistivity survey indicated that low resistivity zones (minimum value, $0.64{\Omega}m$) existed at a depth of 8 m from the surface. Considering the bedrock location and carcass disposal depth, there was no evidence of bedrock contamination by leachate. The results of the electrical resistivity survey are consistent with those of the drilling investigation, which indicates that electrical resistivity effectively depicted the properties of the disposal site. This study demonstrates that electrical resistivity survey is a suitable technique for investigation of animal carcass disposal sites.

Case Studies of Site Investigation Factors and Methods for Site Selection for High-Level Radioactive Waste Disposal (고준위방사성폐기물 처분 부지선정을 위한 조사인자 및 조사기법에 대한 국외사례 분석)

  • Hyo Geon Kim;Si Won Yoo;Dae Seok Bae;Soo Hwan Jung;Ki Su Kim;Jun Kyum Kim;Man Ho Han;Junghae Choi
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.611-626
    • /
    • 2023
  • Overseas examples of the characterization stage of site selection proposed by the International Atomic Energy Agency were reviewed to highlight the factors necessary for consideration in the deep disposal of high-level radioactive waste. Studies in Sweden, Finland, the USA, and Canada were considered. Site investigations in Sweden and Finland commonly covered the fields of geology, hydrogeology, and hydrogeochemistry using similar field investigation techniques. The USA considered survey groups and factors under pre- and post-lockdown guidelines, as well as those for desaturated and saturated surveys. involving geophysical, hydrological, hydrogeological, hydrogeochemical, mechanical/physical, and thermal-characterization investigations. Canada provided a list of investigative methods for both preliminary and detailed site assessments including geological, physical, boring, hydrological, laboratory testing, and chemical analysis studies. Results of this study should elucidate site-selection investigation factors and survey methods applicable to Korea.

Site-response effects on RC buildings isolated by triple concave friction pendulum bearings

  • Ates, Sevket;Yurdakul, Muhammet
    • Computers and Concrete
    • /
    • v.8 no.6
    • /
    • pp.693-715
    • /
    • 2011
  • The main object of this study is to evaluate the seismic response effects on a reinforced concrete building isolated by triple concave friction pendulum (TCFP) bearings. The site-response effects arise from the difference in the local soil conditions at the support points of the buildings. The local soil conditions are, therefore, considered as soft, medium and firm; separately. The results on the responses of the isolated building are compared with those of the non-isolated. The building model used in the time history analysis, which is a two-dimensional and eight-storey reinforced concrete building with and without the seismic isolation bearings and/or the local soil conditions, is composed of two-dimensional moment resisting frames for superstructure and of plane elements featuring plane-stress for substructure. The TCFP bearings for isolating the building are modelled as of a series arrangement of the three single concave friction pendulum (SCFP) bearings. In order to investigate the efficiency of both the seismic isolation bearings and the site-response effects on the buildings, the time history analyses are elaborately conducted. It is noted that the site-response effects are important for the isolated building constructed on soft, medium or firm type local foundation soil. The results of the analysis demonstrate that the site-response has significant effects on the response values of the structure-seismic isolation-foundation soil system.

Interference Analysis for Synthetic Aperture Radar Calibration Sites with Triangular Trihedral Corner Reflectors

  • Shin, Jae-Min;Ra, Sung-Woong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.253-259
    • /
    • 2016
  • The typical method for performing an absolute radiometric calibration of a Synthetic Aperture Radar (SAR) System is to analyze its response, without interference, to a target with a known Radar Cross Section (RCS). To minimize interference, an error-free calibration site for a Corner Reflector (CR) is required on a wide and flat plain or on an area without disturbance sources (such as ground objects). However, in reality, due to expense and lack of availability for long periods, it is difficult to identify such a site. An alternative solution is the use of a Triangular Trihedral Corner Reflector (TTCR) site, with a surrounding protection wall consisting of berms and a hollow. It is possible in this scenario, to create the minimum criteria for an effectively error-free site involving a conventional object-tip reflection applied to all beams. Sidelobe interference by the berm is considered to be the major disturbance factor. Total interference, including an object-tip reflection and a sidelobe interference, is analyzed experimentally with SAR images. The results provide a new guideline for the minimum criteria of TTCR site design that require, at least, the removal of all ground objects within the fifth sidelobe.

Quantification of Uncertainty Associated with Environmental Site Assessments and Its Reduction Approaches (부지 오염도 평가시 불확실성 정량화 및 저감방안)

  • Kim, Geonha;Back, JongHwan;Song, Yong-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.1
    • /
    • pp.26-33
    • /
    • 2014
  • Uncertainty associated with a sampling method is very high in evaluating the degree of site contamination; therefore, such uncertainty affects the reliability of precise investigation and remediation verification. In particular, in evaluating a site for a small-sized filling station, underground utilities, such as connection pipes and oil storage tanks, make grid-unit sampling impossible and the resulting increase in uncertainty is inevitable. Accordingly, this study quantified the uncertainty related to the evaluation of the degree of contamination by total petroleum hydrocarbon and by benzene, toluene, ethylene, and xylene. When planning a grid aimed at detecting a hot spot, major factors that influence the increase in uncertainty include grid interval and the size and shape of the hot spot. The current guideline for soil sampling prescribes that the grid interval increase in proportion to the area of the evaluated site, but this heightens the possibility that a hot spot will not be detected. In evaluating a site, therefore, it is crucial to estimate the size and shape of the hot spot in advance and to establish a sampling plan considering a diversity of scenarios.

Proposed New Evaluation Method of the Site Coefficients Considering the Effects of the Structure-Soil Interaction (구조물-지반 상호작용 영향을 고려한 새로운 지반계수 평가방법에 대한 제안)

  • Kim, Yong-Seok
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.327-336
    • /
    • 2006
  • Site coefficients in IBC and KBC codes have some limits to predict the rational seismic responses of a structure, because they consider only the effect of the soil amplification without the effects of the structure-soil interaction. In this study, upper and lower limits of site coefficients are estimated through the pseudo 3-D elastic seismic response analyses of structures built on linear or nonlinear soil layers considering the structure-soil interaction effects. Soil characteristics of site classes of A, B, and C were assumed to be linear, and those of site classes of D and E were done to be nonlinear and the Ramberg-Osgood model was used to evaluate shear modulus and damping ratio of a soil layer depending on the shear wave velocity of a soil layer. Seismic analyses were performed with 12 weak or moderate earthquake records, scaled the peak acceleration to 0.1g or 0.2g and deconvoluted as earthquake records at the bedrock 30m beneath the outcrop. With the study results of the elastic seismic response analyses of structures, new standard response spectrum and upper and lower limits of the site coefficients of Fa and Fv at the short period range and the period of 1 second are suggested Including the structure-soil interaction effects.

  • PDF

Dynamic to static eccentricity ratio for site-specific earthquakes

  • Kamatchi, P.;Ramana, G.V.;Nagpal, A.K.;Iyer, Nagesh R.;Bhat, J.A.
    • Earthquakes and Structures
    • /
    • v.9 no.2
    • /
    • pp.391-413
    • /
    • 2015
  • Damage of torsionally coupled buildings situated on soil sites has been reported in literature, however no site-specific studies are available for torsionally coupled buildings having site characteristics as a parameter. Effect of torsion is being accounted in seismic codes by the provision of design eccentricity where the dynamic to static eccentricity ratio is a parameter. In this paper, a methodology to determine dynamic to static eccentricity ratio of torsionally coupled buildings has been demonstrated for Delhi region for two torsionally coupled buildings on three soil sites. The variations of average and standard deviations of frame shears for stiff and flexible edges are studied for four eccentricity ratios for the two buildings for the three sites. From the limited studies made, it is observed that the dynamic to static eccentricity ratios observed for site-specific earthquakes are different from Indian seismic code specified value, hence a proposal is made to include a comment in Indian seismic code. Methodology proposed in this paper can be adopted for any region, for the estimation of dynamic to static eccentricity ratio for site specific earthquake.

Comparative Analysis of Decomposition Models with Site-fitted Coefficients for Seoul (서울지역 지역계수가 적용된 직산분리 모델의 성능 비교)

  • Seo, Dong-Hyun;Kim, Hye-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.3
    • /
    • pp.91-102
    • /
    • 2019
  • Decomposition models are essential in TMY development and solar energy system design. Up until recently, only a few decomposition model related researches are implemented in Korea due to lack of measured direct normal solar irradiance. In contrast, numerous researches have been conducted in various countries, and some quasi-universal composition models have been recommended by several papers. In this research, three decomposition models - Watanabe model, Reindl-2 model and Engerer1 model - are selected and their site-fitted coefficients are developed using measured direct normal solar irradiance in Seoul. R-squared, RMSE, MBE of the site-fitted models are compared with the case of original coefficients and then each other. The comparison result shows that the Reindl-2 model with site-fitted coefficients is best suitable for Seoul. Further researches will be conducted to find the best model using more various measured data of Korean cities and site-fitting methods.