• Title/Summary/Keyword: engineering room

Search Result 4,584, Processing Time 0.035 seconds

A Study on Microstructure and Mechanical Properties of TiC/Steel Composites Fabricated by Powder Metallurgy Process (분말야금공정으로 제조된 TiC/steel 금속복합재료의 미세조직 및 기계적 물성 연구)

  • Lee, Jihye;Cho, Seungchan;Kwon, Hansang;Lee, Sang-Kwan;Lee, Sang-Bok;Kim, Daeha;Kim, Junghwan
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.311-316
    • /
    • 2021
  • In this study, TiC/steel metal matrix composites were fabricated by powder metallurgy process using Fealloy powders with 3 wt.% Cr and 10 wt.% Cr, respectively, as matrix material. Subsequently, the composite samples were heat treated by the annealing and quenching-tempering(Q-T), respectively, to understand the effect of heat treatment on the mechanical properties of the composites. The correlation between microstructure and structural strength depending on the chromium content and the heat treatment conditions was studied through tensile, compressive, and transverse rupture test and microstructural analysis. In the case of TiC/steel composite containing 10 wt.% Cr, the tensile strength and transverse rupture strength at room temperature were significantly lowered by the influence of coarse chromium carbide formed at the TiC/steel interface. On the other hand, both TiC/steel composites containing 3 wt.% Cr and 10 wt.% Cr showed much higher compressive strength of about 4 GP after quenching-tempering compared to the annealed specimens regardless of the presence of the chromium carbide.

Major Species and Anatomical Characteristics of the Wood Used for National Use Specified in Yeonggeon-Uigwes of the Late Joseon Dynasty Period (영건의궤 기록을 활용한 조선후기 국용목재의 주요 수종 조사 및 해부학적 특징)

  • LEE, Hyun Mi;BAE, Jae Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.5
    • /
    • pp.462-470
    • /
    • 2021
  • To find out the wood species used in national wood structures in the late Joseon Dynasty, 11 volumes of Yeonggeon-Uigwes were reviewed. It was confirmed that the wood was mainly used for the repair and restoration of palaces, shrines, and fortresses. In the 17th to 20th centuries, the wood species specified in Yeonggeon-Uigwes have revealed either hardwood or softwood. As hardwood species, Juglans mandshurica, Zelkova serrata, Fraxinus rhynchophylla, Betula schmidtii, Paulownia coreana, or Quercus spp. (Quercus aliena; Q, variabilis; Q, dentata; Q, acutissima; Q, mongolica; Q, serrata) were used. As softwood species, Pinus densiflora and Pinus koraiensis were used. Investigation of the wood species is important part because the same species is required as a principle when reparing cultural heritage. In this study, the anatomical images of the wood species were investigated for some samples which were taken from the same species that has been stored in the wood specimen room of the National Institute of Forest Science, instead of the actual wood material used. It was possible to find out the wood species of each member in the wooden cultural heritage buildings by reviewing the Yeonggeon-Uigwes in the late Joseon Dynasty, and the anatomical images of the wood species required for determining the wood species in the repair or restoration of the buildings.

Low-temperature aging and drying treatments of restorative rice to improve its microbial safety and texture (복원용 밥의 미생물 안전성 및 식감 향상을 위한 저온 숙성 및 건조 처리)

  • Cheon, Hee Soon;Cho, Won-Il;Chung, Myong-Soo;Choi, Jun-Bong
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.29-34
    • /
    • 2019
  • In this study, a commercial production stepwise method for restorative rice with high quality and microbial safety was developed. The stepwise treatment method included steaming, refrigerated aging, and low temperature drying. The soaking rice was steamed twice at $90-100^{\circ}C$, and then, the rice was aged at $0-10^{\circ}C$, frozen at $-20^{\circ}C$, and dried at low temperatures with 5 m/s wind speed at $1-20^{\circ}C$ and 85% relative humidity. Applying the three steps improved sensory qualities compared with the conventional hot air drying and made storage at room temperature for 3 months possible. Specifically, the moisture content of the restorative rice was increased to 30%, which was 4.3 times higher than the 7% of the conventional air dried rice, and the rice grain shape was well maintained. The texture and appearance of the three-step rice were significantly improved (p<0.05) in a sensory evaluation.

Illuminance Effects Affecting to Cognitive Ability of the Elderly (고령자의 인지력에 미치는 조도의 영향)

  • Kim, Myung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.507-512
    • /
    • 2019
  • To study how illuminance affects cognitive ability of the elderly, the elderly's EEG, concentration, HRV and vibra image were measured in a test room with temperature $25[^{\circ}C]$, relative humidity 50[RH%] and air flow speed 0.02[m/sec] by varying illuminance to 100[lux], 300[lux], 600[lux], 1000[lux] and 1500[lux]. Ten active elderly males were selected as subjects. Experiment condition was fixed as 1met of activity amount where the subject is seated and relaxed with cloth amount of 0.7clo. As a result, 1000[lux] was found out to be the most pleasant illuminance for the elderly, because $M{\beta}$ increased by 66.35%, and $S{\alpha}$ increased by 31.57% when the elderly was under 1000[lux] of illuminance. Also, concentration under 1000[lux] increased by 8.83% compared to 100[lux], and the pattern of concentration maintained uniformly. SDNN increased by 74.94% under 1000[lux] compared to 100[lux]. Nervousness decreased by 97.23% under 1000[lux] compared to 100[lux]. Moreover, HRT notably increased and aggression remarkably decreased under illuminance of 1000[lux]. Thus, based on the fact that comfort, concentration and heart stability of the elderly reach the highest under 1000[lux], it is determined that the illuminance has to be considered foremost in designing the elderly's welfare facilities to raise their safety and level of independence.

Understanding and Prevention of Fall-related Injuries in Older Adults in South Korea: A Systematic Review (한국 노인의 넘어짐과 연계된 인체손상에 대한 이해와 예방: 체계적 문헌 고찰)

  • Lim, Ki-taek;Lee, Ji-eun;Park, Ha-eun;Park, Su-young;Choi, Woochol Joseph
    • Physical Therapy Korea
    • /
    • v.26 no.2
    • /
    • pp.34-48
    • /
    • 2019
  • Background: Fall-related injuries in older adults are a major health problem, and the risks and mechanisms of these injuries should be affected by race, culture, living environment, and/or economic status. Objects: Research articles have been systematically reviewed to understand fall-related injuries in older adults in South Korea. Methods: 128 published research papers have been found through the Korea Citation Index and the Korean Studies Information Service System, and reviewed in various perspectives, including incidents, fall death rates, medical costs, causes, injury sites and types, locations where falls occurred, prevention strategies, scholarly fields interested in fall injuries, and the role of physical therapy. Results: Fall-related injuries were found to be more common in women than in men, and the number of incidents increased with age, with the highest rate found in individuals over 85 years old. Risk of fall injury was associated with education level, comorbidities, and fear of falling. Common places where falls occurred included the bathroom, living room, stairs, and hallway. Common types of injury included bruises, fractures, and sprains in the lower extremities. Intervention strategies included exercise programs, education, and protective clothing. Scholarly fields interested in fall-related injuries in older adults included medicine, nursing, physical therapy, occupational therapy, physical education, pharmacology, oriental medicine, biomedical engineering, design, clothing, and textiles. Physical therapy intervention using proprioceptive neuromuscular facilitation has been used to improve one's balance. Conclusion: Any movement during the activities of daily living can lead to a fall. Physical therapists are highly educated to analyze human movements and should be involved in more research and practices to solve fall-related injuries in older adults.

Comparison on the Energy Consumption of the Vacuum Evaporation and Hydrated-Based Technologies for Concentrating Dissolved Ions (용존 이온 농축을 위한 진공 증발 기술과 하이드레이트 기반 기술의 소모 에너지 비교)

  • Han, Kunwoo;Rhee, Chang Houn;Ahn, Chi Kyu;Lee, Man Su
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.378-386
    • /
    • 2019
  • In the present paper we report the calculation results of operation energy consumption for dissolved ions concentration technologies using vacuum evaporation (VE) and hydrate formation. Calculations were conducted assuming the tenfold concentration of saline water (0.35 wt% NaCl solution) of 1 mol/s at room temperature and atmospheric pressure employing vacuum evaporation at $69^{\circ}C$ and 30 kPa and hydrate-based concentration using $CH_4$, $CO_2$ and $SF_6$ as guest molecules. Operation energy consumption of VE-based concentration resulted in 47 kJ/mol, whereas those of hydrate-based concentration were 43, 32, and 28 kJ/mol for $CH_4$, $CO_2$ and $SF_6$ hydrates, respectively. We observe that hydrate-based concentration can a competitive option for dissolved ions recovery from energy consumption standpoint. However, the selection of guest gas is very critical, since it accordingly determines the hydration number, the hydrate formation energy, gas compression energy, etc. The selection of guest gas, separation of concentrated brine and water phases, and the enhancement of hydrate formation rate are the key factors for the commercialization of hydrated-based technology for concentrating dissolved ions.

Optimization of Elastic Modulus and Cure Characteristics of Composition for Die Attach Film (다이접착필름용 조성물의 탄성 계수 및 경화 특성 최적화)

  • Sung, Choonghyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.503-509
    • /
    • 2019
  • The demand for smaller, faster, and multi-functional mobile devices in increasing at a rapidly increasing rate. In response to these trends, Stacked Chip Scale Package (SCSP) is used widely in the assembly industry. A film type adhesive called die attach film (DAF) is used widely for bonding chips in SCSP. The DAF requires high flowability at high die attachment temperatures for bonding chips on organic substrates, where the DAF needs to feel the gap depth, or for bonding the same sized dies, where the DAF needs to penetrate bonding wires. In this study, the mixture design of experiment (DOE) was performed for three raw materials to obtain the optimized DAF recipe for low elastic modulus at high temperature. Three components are acrylic polymer (SG-P3) and two solid epoxy resins (YD011 and YDCN500-1P) with different softening points. According to the DOE results, the elastic modulus at high temperature was influenced greatly by SG-P3. The elastic modulus at $100^{\circ}C$ decreased from 1.0 MPa to 0.2 MPa as the amount of SG-P3 was decreased by 20%. In contrast, the elastic modulus at room temperature was dominated by YD011, an epoxy with a higher softening point. The optimized DAF recipe showed approximately 98.4% pickup performance when a UV dicing tape was used. A DAF crack that occurred in curing was effectively suppressed through optimization of the cure accelerator amount and two-step cure schedule. The imizadole type accelerator showed better performance than the amine type accelerator.

Derivation of a Verification Formula for the Dose Rate Contributing to the Maze Door of the 6 MV Treatment Room (6 MV 치료실의 미로 도어에 기여하는 선량률의 검증식 유도)

  • Park, Cheol Seo;Kim, Jong Eon;Kang, Eun Bo
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.1
    • /
    • pp.85-91
    • /
    • 2021
  • The purpose of this study is to derive an equation to verify the accuracy of the dose rate for each component calculated at the measurement point outside the maze door when designing the maze door of 6 MV X-ray beam. Based on the component-specific dose rate calculation formula for the measurement point outside the maze door described in NCRP Report 151 and IAEA Safety Report Series 47, the dose rate calculation formula for each component when applying the values of the drawing-based parameters and the dose rate calculation formula for each component when applying the values of conservative parameters are derived. From the two dose rate calculation formulas for each component, the dose rate verification formula for each component at the measurement point outside the maze door was derived. The resulting dose rate verification formula for each component at the measurement point outside the maze door can be compared and analyzed whether the dose rate for each component at the measurement point outside the maze door calculated by the designer falls within the range of the dose rate obtained from the derived dose rate verification formula for each component. This verification formula is considered to be practically useful in verifying the accuracy of the dose rate for each component calculated by the designer.

Selection of Transition Point through Calculation of Cumulative Toxic Load -Focused on Incheon Area- (누적독성부하 산정을 통한 주민소산 전환시점 선정에 관한 연구 -인천지역을 중심으로-)

  • Lee, Eun Ji;Han, Man Hyeong;Chon, Young Woo;Lee, Ik Mo;Hwang, Yong Woo
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.6
    • /
    • pp.15-24
    • /
    • 2020
  • With the development of the chemical industry, the chemical accident is increasing every year, thereby increasing the risk of accidents caused by chemicals. The Ministry of Environment provides the criteria for determining shelter-in-place or outdoor evacuation by material, duration of accident, and distance from the toxic substance leak. However, it is hard to say that the criteria for determining the transition point are not clear. Transition point mean the time that evacuation method is switched from shelter-in-place to outdoor evacuation. So, the purpose of this study was to calculate appropriate transition point by comparing the cumulative toxic load. Namdong-gu in Incheon Metropolitan City was finally selected as the target area, considering the current status of the population of Incheon Metropolitan City in 2016 and the statistical survey of chemicals in 2016. The target materials were HCl, HF, and NH3. Modeling was simulated by ALOHA and performed assuming that the entire amount would be leaked for 10 min. Residents' evacuation scenarios were assumed to be shelter-in-place, immediate outdoor evacuation, and outdoor evacuation at an appropriate time after shelter-in-place. Based on the above method, the appropriate transition point from residents located in A(800 m away), B(1,200 m away), C(1,400 m away) and D(2,200 m away) was identified. In HCl, appropriate transition point was after 15 min, after 16 min, after 17 min, after 20 min in order by A, B, C and D. In HF, appropriate transition point was before 1 min or after 16 min, before 4 min or after 19 min, before 5 min or after 20 min, before 14 min or after 26 min in order by A, B, C and D. In NH3, appropriate transition point at A was before 4 min or after 16. Others are not in chemical cloud. This study confirmed the transition point to minimize the cumulative toxic load can be obtained by quantitative method. Through this, it might be possible to select evacuation method quantitatively that cumulative toxic load are minimal. In addition, if the shelter-in-place is maintained without transition to outdoor evacuation, the cumulative toxic load will increase more than outdoor evacuation. Therefore, it was confirmed that actions to reduce the concentration of chemicals in the room were necessary, such as conducting ventilation after the chemical cloud passed through the site.

Evaluation of Hydration Heat Characteristics of Strontium Based Hydration Heat Reducer Addition on Concrete in Hot Weather Condition (서중환경에서 스트론튬계 수화열저감재를 사용한 콘크리트의 수화발열특성 평가)

  • Suh, Dong-Kyun;Kim, Gyu-Yong;Kil, Bae-Su;Koyama, Tomoyuki;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.189-196
    • /
    • 2020
  • When concrete member become large like in high rise buildings, hydration heat makes temperature difference inside and outside and cause cracks. The method of using latent heat material as heat reducer could be more accessible, usable and efficient than other methods. Therefore, many studies using PCM as heat reducer are being conducted. Since heat reducer have different reacting temperature, they may be affected by environmental factors like ambient and concrete mixing temperature but studies issuing this are insignificant. Therefore, this paper attempt to evaluate the hydration heat characteristics and quality of concrete using strontium-based PCM under hot weather conditions. As a result, when the strontium-based hydration heat reducer was mixed 3wt.% and 5wt.% in hot weather condition, hydration heat speed and heating rate could be reduced by 8%, 21%, and 75, 85 minutes compared to OPC, respectively. This is considered to be the phase change reaction is relatively promoted when the temperature is high and cause improve performance than room condition result. Later, comparing the efficiency of other types of P.C.M in hot weather condition, and conduct detailed reviews on the strength development in long-term age.