• Title/Summary/Keyword: engineering problem

Search Result 21,147, Processing Time 0.042 seconds

The Role of Science Knowledge Application in Improving Engineering Problem Solving Skills

  • Nam, Younkyeong;Chae, Jimin
    • Journal of the Korean earth science society
    • /
    • v.40 no.4
    • /
    • pp.436-445
    • /
    • 2019
  • This study presents how two types of integrated science and engineering lessons affect students' engineering problem solving skills and their perceptions of engineering. In total, 146 middle school students participated in this study. Eighty-six students participated in the Type I lesson (complete engineering design lesson with a science knowledge application) and 60 students participated in the Type II lesson (engineering design without a science knowledge application). Two main datasets, (1) students' Creative Engineering Problem Solving Propensity (CEPSP) measurement scores and (2) open-ended survey questions about students' perceptions of engineering, were collected before and after the lessons. The results of this study show that after participating in the Type I lesson, students' CEPSP scores significantly increased, whereas the CEPSP scores of the students who participated in the Type II lesson did not increase significantly. In addition, students who participated in the Type I lesson perceived engineering and the engineering integrated science lesson differently compared to the students who participated in the Type II lesson. The results of this study show that engineering integrated science, technology, engineering & mathematics (STEM) lessons should include a complete engineering design and a science knowledge application to improve students' engineering problem solving skills.

Minimizing the Average Distance of Separated Points on the Plane in the L1-Distance

  • Kim, Jae-Hoon
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.1
    • /
    • pp.1-4
    • /
    • 2012
  • Given separated points divided by a line, called a wall, in a plane, we aim to make a gate in the wall to connect the separated points to each other. In this setting, the problem is to find a location for the gate that minimizes the average distance between the points. The problem is a variant of the well-known facility location problem, which is extensively studied in the fields of operations research, location theory, theoretical computer science, and so on. In this paper, we consider the $L^1$-distance of the points in the plane. The points are projected onto the wall and so the problem is transformed to a proximity problem of points on a line. Then it is shown that the transformed problem is related to the weighted median problem of points on the line. Therefore, we obtain an O(n log n)-time algorithm to solve our problem.

Equipment Replacement Problem and Engineering Valuation (설비대치문제와 평가공학)

  • 조진형;김성집
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.39
    • /
    • pp.229-234
    • /
    • 1996
  • When we analyze equipment replacement problem, we take the table of the duration period of tangible fixed asset on the corporation income tax law, and treat depreciation as simple allocation process for capital recovery. In this problem, there are some papers considering the concepts of economic depreciation. Those are not perfect model from a economical point of view. Therefore, we deal with equipment replacement problem considering the engineering valuation as well as the economic concept in the evaluation of asset.

  • PDF

Instructional Strategies of Problem-Based Learning for Creative Engineering Education (창의적 공학교육을 위한 문제중심학습(PBL)의 모형과 절차의 탐색)

  • Choi Yu-Hyun
    • Journal of Engineering Education Research
    • /
    • v.8 no.1
    • /
    • pp.99-112
    • /
    • 2005
  • Problem-Based Learning is focused, experiential learning organized around the investigation and resolution of messy, real-world problem. It is both a curriculum organizer and instructional strategy, two complementary processes. The PBL model developed in this study was composed the two components of Problem Design(curriculum organizer) and Problem Implementation(instructional strategy). The basic process of Problem Implementation Model were composed the 8 steps ; 1) the identification of problem, 2) the specification of problem, 3) the exploration and generation for solution, 4) the selecting of best idea, 5) the specific planning of best idea, 6) the implementation and realization, 7) the evaluation, 8) the applying and reflection.

NSGA-II Technique for Multi-objective Generation Dispatch of Thermal Generators with Nonsmooth Fuel Cost Functions

  • Rajkumar, M.;Mahadevan, K.;Kannan, S.;Baskar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.423-432
    • /
    • 2014
  • Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is applied for solving Combined Economic Emission Dispatch (CEED) problem with valve-point loading of thermal generators. This CEED problem with valve-point loading is a nonlinear, constrained multi-objective optimization problem, with power balance and generator capacity constraints. The valve-point loading introduce ripples in the input-output characteristics of generating units and make the CEED problem as a nonsmooth optimization problem. To validate its effectiveness of NSGA-II, two benchmark test systems, IEEE 30-bus and IEEE 118-bus systems are considered. To compare the Pareto-front obtained using NSGA-II, reference Pareto-front is generated using multiple runs of Real Coded Genetic Algorithm (RCGA) with weighted sum of objectives. Comparison with other optimization techniques showed the superiority of the NSGA-II approach and confirmed its potential for solving the CEED problem. Numerical results show that NSGA-II algorithm can provide Pareto-front in a single run with good diversity and convergence. An approach based on Technique for Ordering Preferences by Similarity to Ideal Solution (TOPSIS) is applied on non-dominated solutions obtained to determine Best Compromise Solution (BCS).

Analysis of Dual Mediation Effect of Teamwork Competence and Self-Directed Learning Ability between Daily Creativity and Problem Solving Ability of Engineering Students (일상적 창의성과 문제해결능력의 관계에서 공학계열 대학생의 팀워크역량과 자기주도학습력의 이중매개효과 분석)

  • Bae, Sung Ah;Ok, Seung-Yong;Noh, Soo Rim
    • Journal of Engineering Education Research
    • /
    • v.23 no.6
    • /
    • pp.17-26
    • /
    • 2020
  • In this paper, the effect of daily creativity of engineering students on problem-solving ability is addressed through the dual mediating effect of teamwork competency and self-directed learning ability. To this end, a regression-based statistical mediation analysis has been performed on the dual mediation model in which daily creativity and problem solving ability were treated as independent and dependent variables respectively, and teamwork competence and self-directed learning ability were included as mediation variables. The analysis result confirmed that the daily creativity has direct effect on the problem-solving ability, as well as indirect effects through teamwork competence and self-directed learning ability. In particular, the serial mediating effect of teamwork competency and self-directed learning ability was also confirmed to be statistically significant in the relationship between daily creativity and problem-solving ability. This verifies that problem-solving ability can be improved not only directly by improving daily creativity but also indirectly by improving teamwork competence and self-directed learning ability. In addition, teamwork competency showed greater indirect effect on problem-solving ability than self-directed learning ability, so increasing teamwork competency has a more significant effect on improving problem-solving ability than increasing self-directed learning ability. Therefore, in order to develop better problem-solving ability, it is necessary to identify and improve the learners' teamwork competency first and to strive to create an environment where learners can solve problems based on mutual trust with their teammates.

A Case Study for Implementing Problem Based Learning on Engineering Education (공학교육에서의 문제중심학습 실행을 위한 사례연구)

  • Chang, Kyung-Won
    • Journal of Engineering Education Research
    • /
    • v.12 no.2
    • /
    • pp.96-106
    • /
    • 2009
  • Problem-based learning has been considered as one of the effective educational methods in engineering education. However, in so far as professors who require practical insights in PBL and experiences of developing actual problems by subject, in particular, thorough understanding from experiences of PBL process as well as problem-development has not been sufficiently provided. The purpose of this paper is to present strategies focusing on problem design for PBL on engineering education. In order to do this, a literature review and a qualitative case study were performed. Especially, the study intended to identify differences and gap between professors' problems-development process and its output and those of authentic PBL. Professors were found that their PBL problems had lack of authenticity, consideration on experiences of students, and realistic thinking process. Professors in PBL had difficulty to link theory into real situation. In consequence, in designing a problem, we consider the followings; first, the problem should be designed based on real design process and its output. Second, the problem should be designed and implemented in all academic years for developing student's systematic and skillful thinking process. In conclusion, more supports are needed for engineering professors to extend their experiences of designing and developing actual problems that present real experience.

Creative Engineering Design Education Utilizing the Problem-solving Process and Skills of Critico(-Creative) Thinking (비판(-창의)적 사고의 문제 해결 과정과 기량을 활용한 창의 공학 설계 교육)

  • Park, Sang Tae;Kim, Jedo
    • Journal of Engineering Education Research
    • /
    • v.24 no.2
    • /
    • pp.68-75
    • /
    • 2021
  • ABEEK recommends convergent engineering projects to nurture creative problem-solving ability for 1st year engineering students through 'Creative Engineering Design' course. However, 1st year engineering students, who have not yet studied core subjects in engineering, have difficulties understanding and coping with the challenges posed by the engineering-related projects. For this reason, the educational objectives of this course are usually frustrating to achieve by the instructor. In this paper, by using the problem-solving process and skills of critico(-creative) thinking, we prepare guidelines for creative engineering design education that allow 1st-year students to effectively participate in engineering projects without a complete understanding of the design process which is to be studied. Also, we present a case study that applies the guidelines to an on-going creative engineering design course and discusses the outcomes by showing student-generated works. The results showed that the intuitive content and everyday expression of critico(-creative) thinking education enabled the instructor to effectively guide their students through the requirements of engineering projects without relying on advanced engineering design methods, and that the application of these guidelines also helped improve students' communication skills, including presentation. We show that the guidelines for creative engineering design education utilizing the problem-solving process and skills of critico(-creative) thinking is not only contributing to achieving the educational objectives of the creative engineering design course but can also be an educational paradigm that incorporates critico(-creative) thinking education into engineering education.

The Life Cycle of the Rendezvous Problem of Cognitive Radio Ad Hoc Networks: A Survey

  • Htike, Zaw;Hong, Choong Seon;Lee, Sungwon
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.2
    • /
    • pp.81-88
    • /
    • 2013
  • In cognitive radio or dynamic spectrum access networks, a rendezvous represents meeting two or more users on a common channel, and negotiating to establish data communication. The rendezvous problem is one of the most challenging tasks in cognitive radio ad hoc networks. Generally, this problem is simplified by using two well-known mechanisms: the first uses a predefined common control channel, while the second employs a channel hopping procedure. Yet, these two mechanisms form a life cycle, when they simplify the rendezvous problem in cognitive radio networks. The main purpose of this paper is to point out how and why this cycle forms.

Compare of Characteristics of Efficient and Inefficient Problem-Solving Teams Using SYMLOG Diagram Analysis (SYMLOG 다이어그램 분석을 통한 효율적인 문제 해결 팀과 비효율적인 문제 해결 팀의 특징 비교 연구)

  • Jo, Han-jin;Lee, Hakseok;Shin, Gyeong-Seop;Kim, Taehoon
    • Journal of Engineering Education Research
    • /
    • v.24 no.1
    • /
    • pp.3-14
    • /
    • 2021
  • The purpose of this study is to analyze the characteristics of efficient problem-solving teams and inefficient problem-solving teams using SYMLOG. In this study, 35 college students majoring in engineering education at C university were organized into 7 teams and carried out technological problem solving projects over one semester. Based on the results of the team project, the top 2 teams were defined as efficient problem solving teams and the bottom 2 teams were defined as inefficient problem solving team, and analyzed the characteristics of the team using SYMLOG. The main results are as follows: First, an analysis of SYMLOG from efficient problem solving teams and inefficient problem solving teams showed that there was a difference between self-awareness and others' perception in terms of U(Upward)-D(Downward) dimension. Second, in the inefficient problem solving teams, there was a significant difference between self-awareness and others' in the F(Forward)-B(Backward) dimension. Third, there was no difference between self-awareness and others' in both efficient and inefficient teams at the P (Positive)-N(Negative) dimension. Fourth, an efficient problem-solving team had a clear leader, and there was a team member who supported the leader. On the other hand, the inefficient problem-solving team did not have a clear leader, or one person played the role of leader and there were no team members supporting the leader.