• Title/Summary/Keyword: engineering optimization

Search Result 11,061, Processing Time 0.033 seconds

Using Echolocation Search Algorithm (ESA) for truss size optimization

  • Nobahari, Mehdi;Ghabdiyan, Nafise
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.855-864
    • /
    • 2022
  • Due to limited resources, and increasing speed of development, the optimal use of available resources has become the most important challenge of human societies. In the last few decades, many researchers have focused their research on solving various optimization problems, providing new optimization methods, and improving the performance of existing optimization methods. Echolocation Search Algorithm (ESA) is an evolutionary optimization algorithm that is based on mimicking the mechanism of the animals such as bats, dolphins, oilbirds, etc in food finding to solve optimization problems. In this paper, the ability of ESA for solving truss size optimization problems with continuous variables is investigated. To examine the efficiency of ESA, three benchmark examples are considered. The numerical results exhibit the effectiveness of ESA for solving truss optimization problems.

Estimation of Hydrodynamic Coefficients from Sea Trials Using a System Identification Method

  • Kim, Daewon;Benedict, Knud;Paschen, Mathias
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.3
    • /
    • pp.258-265
    • /
    • 2017
  • This paper validates a system identification method using mathematical optimization using sea trial measurement data as a benchmark. A fast time simulation tool, SIMOPT, and a Rheinmetall Defence mathematical model have been adopted to conduct initial hydrodynamic coefficient estimation and simulate ship modelling. Calibration for the environmental effect of sea trial measurement and sensitivity analysis have been carried out to enable a simple and efficient optimization process. The optimization process consists of three steps, and each step controls different coefficients according to the corresponding manoeuvre. Optimization result of Step 1, an optimization for coefficient on x-axis, was similar compared to values applying an empirical regression formulae by Clarke and Norrbin, which is used for SIMOPT. Results of Steps 2 and 3, which are for linear coefficients and nonlinear coefficients, respectively, was differ from the calculation results of the method by Clarke and Norrbin. A comparison for ship trajectory of simulation results from the benchmark and optimization results indicated that the suggested stepwise optimization method enables a coefficient tuning in a mathematical way.

Structural Design Optimization of a High-Precision Grinding Machine for Minimum Compliance and Lightweight Using Genetic Algorithm (가변 벌점함수 유전알고리즘을 이용한 고정밀 양면 연삭기 구조물의 경량 고강성화 최적설계)

  • Hong Jin-Hyun;Park Jong-Kweon;Choi Young-Hyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.146-153
    • /
    • 2005
  • In this paper, a multi-step optimization using genetic algorithm with variable penalty function is introduced to the structural design optimization of a grinding machine. The design problem, in this study, is to find out the optimum configuration and dimensions of structural members which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously under several design constraints such as dimensional constraints, maximum deflection limit, safety criterion, and maximum vibration amplitude limit. The first step is shape optimization, in which the best structural configuration is found by getting rid of structural members that have no contributions to the design objectives from the given initial design configuration. The second and third steps are sizing optimization. The second design step gives a set of good design solutions having higher fitness for lightweight and minimum static compliance. Finally the best solution, which has minimum dynamic compliance and weight, is extracted from the good solution set. The proposed design optimization method was successfully applied to the structural design optimization of a grinding machine. After optimization, both static and dynamic compliances are reduced more than 58.4% compared with the initial design, which was designed empirically by experienced engineers. Moreover the weight of the optimized structure are also slightly reduced than before.

A Study on ESS Optimal Operation Strategy Using Two Stage Hybrid Optimization (Two Stage Hybrid Optimization을 사용한 ESS 최적 운전 전략에 대한 연구)

  • Gong, Eun-Kyoung;Sohn, Jin-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.833-839
    • /
    • 2018
  • This paper presents an analysis and the methodology of optimal operation strategy of the ESS(Energy Storage System) for reduce electricity charges. Electricity charges consist of a basic charge based on the contract capacity and energy charge according to the power usage. In order to use electrical energy at minimal charge, these two factors are required to be reduced at the same time. QP(Quadratic Programming) is appropriate for minimization of the basic charge and LP(Linear Programmin) is adequate to minimize the energy charge. However, the integer variable have to be introduced for modelling of different charge and discharge efficiency of ESS PCS(Power Conversion System), where MILP(Mixed Integer Linear Programming) can be used. In this case, the extent to which the peak load savings is accomplished should be assumed before the energy charge is minimized. So, to minimize the electricity charge exactly, optimization is sequentially performed in this paper, so-called the Two Stage Hybird optimization, where the extent to which the peak load savings is firstly accomplished through optimization of basic charge and then the optimization of energy charge is performed with different charge and discharge efficiency of ESS PCS. Finally, the proposed method is analyzed quantitatively with other optimization methods.

An Approximation Method in Collaborative Optimization for Engine Selection coupled with Propulsion Performance Prediction

  • Jang, Beom-Seon;Yang, Young-Soon;Suh, Jung-Chun
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.2
    • /
    • pp.41-60
    • /
    • 2004
  • Ship design process requires lots of complicated analyses for determining a large number of design variables. Due to its complexity, the process is divided into several tractable designs or analysis problems. The interdependent relationship requires repetitive works. This paper employs collaborative optimization (CO), one of the multidisciplinary design optimization (MDO) techniques, for treating such complex relationship. CO guarantees disciplinary autonomy while maintaining interdisciplinary compatibility due to its bi-level optimization structure. However, the considerably increased computational time and the slow convergence have been reported as its drawbacks. This paper proposes the use of an approximation model in place of the disciplinary optimization in the system-level optimization. Neural network classification is employed as a classifier to determine whether a design point is feasible or not. Kriging is also combined with the classification to make up for the weakness that the classification cannot estimate the degree of infeasibility. For the purpose of enhancing the accuracy of a predicted optimum and reducing the required number of disciplinary optimizations, an approximation management framework is also employed in the system-level optimization.

Optimization of ride comfort for a three-axle vehicle equipped with interconnected hydro-pneumatic suspension system

  • Saglam, Ferhat;Unlusoy, Y. Samim
    • Advances in Automotive Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-20
    • /
    • 2018
  • The aim of this study is the optimization of the parameters of interconnected Hydro-Pneumatic (HP) suspension system of a three-axle vehicle for ride comfort and handling. For HP suspension systems of equivalent vertical stiffness and damping characteristics, interconnected HP suspension systems increase roll and pitch stiffness and damping characteristics of the vehicle as compared to unconnected HP suspension systems. Thus, they result in improved handling and braking/acceleration performances of the vehicle. However, increased roll and pitch stiffness and damping characteristics also increase roll and pitch accelerations, which in turn result in degraded ride comfort performance. Therefore, in order to improve both ride comfort and vehicle handling performances simultaneously, an optimum parameter set of an interconnected HP suspension system is obtained through an optimization procedure. The objective function is formed as the sum of the weighted vertical accelerations according to ISO 2631. The roll angle, one of the important measures of vehicle handling and driving safety, is imposed as a constraint in the optimization study. Upper and lower parameter bounds are used in the optimization in order to get a physically realizable parameter set. Optimization procedure is implemented for a three-axle vehicle with unconnected and interconnected suspension systems separately. Optimization results show that interconnected HP suspension system results in improvements in both ride comfort and vehicle handling performance, as compared to the unconnected suspension system. As a result, interconnected HP suspension systems present a solution to the conflict between ride comfort and vehicle handling which is present in unconnected suspension systems.

Aerodynamic Optimization Design for All Condition of Centrifugal Compressor

  • Lin, Zhirong;Gao, Xue-Lin;Yuan, Xin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.213-217
    • /
    • 2008
  • This paper describes an application of centrifugal compressor optimization system, in which the blade profile of impeller is represented with NURBS(Non-Uniform Rational B-Spline) curve. A commercial CFD(Computational Fluid Dynamics) program named NUMECA fine/turbo was used to evaluate the performance of the whole centrifugal compressor flow passage including impeller and diffuser. The whole optimization design system was integrated based on iSIGHT, a commercial integration and optimization software, which provides a direct application of some optimization algorithms. To insure the practicability of optimization, the performance of centrifugal compressor under all condition was concerned during the optimizing process. That means a compositive object function considering the aerodynamic efficiency, pressure ratio and mass flow rate under different work condition was applied by using different weight number for different conditions. Using the optimization method described in this paper, an optimized design of the impeller blade of centrifugal compressor was obtained. Comparing to the original design, optimized design has a better performance not only under the design work condition, but also the off-design work condition including near stall and near choke condition.

  • PDF

Sequential Approximate Optimization by Dual Method Based on Two-Point Diagonal Quadratic Approximation (이점 대각 이차 근사화 기법을 쌍대기법에 적용한 순차적 근사 최적설계)

  • Park, Seon-Ho;Jung, Sang-Jin;Jeong, Seung-Hyun;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.259-266
    • /
    • 2011
  • We present a new dual sequential approximate optimization (SAO) algorithm called SD-TDQAO (sequential dual two-point diagonal quadratic approximate optimization). This algorithm solves engineering optimization problems with a nonlinear objective and nonlinear inequality constraints. The two-point diagonal quadratic approximation (TDQA) was originally non-convex and inseparable quadratic approximation in the primal design variable space. To use the dual method, SD-TDQAO uses diagonal quadratic explicit separable approximation; this can easily ensure convexity and separability. An important feature is that the second-derivative terms of the quadratic approximation are approximated by TDQA, which uses only information on the function and the derivative values at two consecutive iteration points. The algorithm will be illustrated using mathematical and topological test problems, and its performance will be compared with that of the MMA algorithm.

Identification of Fuzzy Inference System Based on Information Granulation

  • Huang, Wei;Ding, Lixin;Oh, Sung-Kwun;Jeong, Chang-Won;Joo, Su-Chong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.4
    • /
    • pp.575-594
    • /
    • 2010
  • In this study, we propose a space search algorithm (SSA) and then introduce a hybrid optimization of fuzzy inference systems based on SSA and information granulation (IG). In comparison with "conventional" evolutionary algorithms (such as PSO), SSA leads no.t only to better search performance to find global optimization but is also more computationally effective when dealing with the optimization of the fuzzy models. In the hybrid optimization of fuzzy inference system, SSA is exploited to carry out the parametric optimization of the fuzzy model as well as to realize its structural optimization. IG realized with the aid of C-Means clustering helps determine the initial values of the apex parameters of the membership function of fuzzy model. The overall hybrid identification of fuzzy inference systems comes in the form of two optimization mechanisms: structure identification (such as the number of input variables to be used, a specific subset of input variables, the number of membership functions, and polyno.mial type) and parameter identification (viz. the apexes of membership function). The structure identification is developed by SSA and C-Means while the parameter estimation is realized via SSA and a standard least square method. The evaluation of the performance of the proposed model was carried out by using four representative numerical examples such as No.n-linear function, gas furnace, NO.x emission process data, and Mackey-Glass time series. A comparative study of SSA and PSO demonstrates that SSA leads to improved performance both in terms of the quality of the model and the computing time required. The proposed model is also contrasted with the quality of some "conventional" fuzzy models already encountered in the literature.

An intelligent optimization method for the HCSB blanket based on an improved multi-objective NSGA-III algorithm and an adaptive BP neural network

  • Wen Zhou;Guomin Sun;Shuichiro Miwa;Zihui Yang;Zhuang Li;Di Zhang;Jianye Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3150-3163
    • /
    • 2023
  • To improve the performance of blanket: maximizing the tritium breeding rate (TBR) for tritium self-sufficiency, and minimizing the Dose of backplate for radiation protection, most previous studies are based on manual corrections to adjust the blanket structure to achieve optimization design, but it is difficult to find an optimal structure and tends to be trapped by local optimizations as it involves multiphysics field design, which is also inefficient and time-consuming process. The artificial intelligence (AI) maybe is a potential method for the optimization design of the blanket. So, this paper aims to develop an intelligent optimization method based on an improved multi-objective NSGA-III algorithm and an adaptive BP neural network to solve these problems mentioned above. This method has been applied on optimizing the radial arrangement of a conceptual design of CFETR HCSB blanket. Finally, a series of optimal radial arrangements are obtained under the constraints that the temperature of each component of the blanket does not exceed the limit and the radial length remains unchanged, the efficiency of the blanket optimization design is significantly improved. This study will provide a clue and inspiration for the application of artificial intelligence technology in the optimization design of blanket.