• Title/Summary/Keyword: engineering optimization

Search Result 11,050, Processing Time 0.039 seconds

Performance-based optimization of 2D reinforced concrete wall-frames using pushover analysis and ABC optimization algorithm

  • Saba Faghirnejad;Denise-Penelope N. Kontoni;Mohammad Reza Ghasemi
    • Earthquakes and Structures
    • /
    • v.27 no.4
    • /
    • pp.285-302
    • /
    • 2024
  • Conducting nonlinear pushover analysis typically demands intricate and resource-intensive computational efforts, involving a highly iterative process necessary for meeting both design-defined and requirements of codes in performance-based design. This study presents a computer-based technique for reinforced concrete (RC) buildings, incorporating optimization numerical approaches, optimality criteria and pushover analysis to automatically enhance seismic design performance. The optimal design of concrete beams, columns and shear walls in concrete frames is presented using the artificial bee colony optimization algorithm. The methodology is applied to three frames: a 4-story, an 8-story and a 12-story. These structures are designed to minimize overall weight while satisfying the levels of performance including Life Safety (LS), Collapse Prevention (CP), and Immediate Occupancy (IO). The process involves three main steps: first, optimization codes are implemented in MATLAB software, and the OpenSees software is used for nonlinear static analysis. By solving the optimization problem, several top designs are obtained for each frame and shear wall. Pushover analysis is conducted considering the constraints on relative displacement and plastic hinge rotation based on the nonlinear provisions of the FEMA356 nonlinear provisions to achieve each level of performance. Subsequently, convergence, pushover, and drift history curves are plotted for each frame, and leading to the selection of the best design. The results demonstrate that the algorithm effectively achieves optimal designs with reduced weight, meeting the desired performance criteria.

Optimization of the Television Packing System Using Equivalent Static Loads (등가정하중법을 이용한 텔레비전 포장재의 구조최적설계)

  • Lee, Youngmyung;Jung, Ui-Jin;Park, Gyung-Jin;Han, In-Sik;Kim, Tai-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.311-318
    • /
    • 2015
  • A nonlinear dynamic response structural optimization process is proposed for the television (TV) packing system that protects the damage from a drop situation using the equivalent static loads (ESLs). Topology optimization using ESLs is carried out for conceptual design, and shape optimization using stress ESLs for a virtual model is performed for detailed design. Stress ESLs are static loads that generate the same displacement as well as the stress fields of linear static analysis as those of nonlinear dynamic analysis. Thus, the response of nonlinear dynamic analysis can be utilized as a constraint in the linear static structural optimization. An actual example is solved to validate the process. The drop test of a television packaging system is analyzed by LS-DYNA, and NASTRAN is used for optimization.

Quantum Bee Colony Optimization and Non-dominated Sorting Quantum Bee Colony Optimization Based Multi-relay Selection Scheme

  • Ji, Qiang;Zhang, Shifeng;Zhao, Haoguang;Zhang, Tiankui;Cao, Jinlong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4357-4378
    • /
    • 2017
  • In cooperative multi-relay networks, the relay nodes which are selected are very important to the system performance. How to choose the best cooperative relay nodes is an optimization problem. In this paper, multi-relay selection schemes which consider either single objective or multi-objective are proposed based on evolutionary algorithms. Firstly, the single objective optimization problems of multi-relay selection considering signal to noise ratio (SNR) or power efficiency maximization are solved based on the quantum bee colony optimization (QBCO). Then the multi-objective optimization problems of multi-relay selection considering SNR maximization and power consumption minimization (two contradictive objectives) or SNR maximization and power efficiency maximization (also two contradictive objectives) are solved based on non-dominated sorting quantum bee colony optimization (NSQBCO), which can obtain the Pareto front solutions considering two contradictive objectives simultaneously. Simulation results show that QBCO based multi-relay selection schemes have the ability to search global optimal solution compared with other multi-relay selection schemes in literature, while NSQBCO based multi-relay selection schemes can obtain the same Pareto front solutions as exhaustive search when the number of relays is not very large. When the number of relays is very large, exhaustive search cannot be used due to complexity but NSQBCO based multi-relay selection schemes can still be used to solve the problems. All simulation results demonstrate the effectiveness of the proposed schemes.

Multi-step design optimization of a high speed machine tool structure using a genetic algorithm with dynamic penalty (동적 벌점함수 유전 알고리즘과 다단계 설계방법을 이용한 공작기계 구조물의 설계 최적화)

  • 최영휴;배병태;김태형;박보선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.108-113
    • /
    • 2002
  • This paper presents a multi-step structural design optimization method fur machine tool structures using a genetic algorithm with dynamic penalty. The first step is a sectional topology optimization, which is to determine the best sectional construction that minimize the structural weight and the compliance responses subjected to some constraints. The second step is a static design optimization, in which the weight and the static compliance response are minimized under some dimensional and safety constraints. The third step is a dynamic design optimization, where the weight static compliance, and dynamic compliance of the structure are minimized under the same constraints. The proposed design method was examined on the 10-bar truss problem of topology and sizing optimization. And the results showed that our solution is better than or just about the same as the best one of the previous researches. Furthermore, we applied this method to the topology and sizing optimization of a crossbeam slider for a high-speed machining center. The topology optimization result gives the best desirable cross-section shape whose weight was reduced by 38.8% than the original configuration. The subsequent static and dynamic design optimization reduced the weight, static and dynamic compliances by 5.7 %, 2.1% and 19.1% respectively from the topology-optimized model. The examples demonstrated the feasibility of the suggested design optimization method.

  • PDF

A multi-objective optimization framework for optimally designing steel moment frame structures under multiple seismic excitations

  • Ghasemof, Ali;Mirtaheri, Masoud;Mohammadi, Reza Karami;Salkhordeh, Mojtaba
    • Earthquakes and Structures
    • /
    • v.23 no.1
    • /
    • pp.35-57
    • /
    • 2022
  • This article presents a computationally efficient framework for multi-objective seismic design optimization of steel moment-resisting frame (MRF) structures based on the nonlinear dynamic analysis procedure. This framework employs the uniform damage distribution philosophy to minimize the weight (initial cost) of the structure at different levels of damage. The preliminary framework was recently proposed by the authors based on the single excitation and the nonlinear static (pushover) analysis procedure, in which the effects of record-to-record variability as well as higher-order vibration modes were neglected. The present study investigates the reliability of the previous framework by extending the proposed algorithm using the nonlinear dynamic design procedure (optimization under multiple ground motions). Three benchmark structures, including 4-, 8-, and 12-story steel MRFs, representing the behavior of low-, mid-, and high-rise buildings, are utilized to evaluate the proposed framework. The total weight of the structure and the maximum inter-story drift ratio (IDRmax) resulting from the average response of the structure to a set of seven ground motion records are considered as two conflicting objectives for the optimization problem and are simultaneously minimized. The results of this study indicate that the optimization under several ground motions leads to almost similar outcomes in terms of optimization objectives to those are obtained from optimization under pushover analysis. However, investigation of optimal designs under a suite of 22 earthquake records reveals that the damage distribution in buildings designed by the nonlinear dynamic-based procedure is closer to the uniform distribution (desired target during the optimization process) compared to those designed according to the pushover procedure.

STEP-Based Information Exchange for Structural Analysis and Optimization (STEP을 이용한 구조해석 및 최적설계 정보교환)

  • Baek, Ju-Hwan;Min, Seung-Jae
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.1
    • /
    • pp.8-14
    • /
    • 2007
  • In the product design process computer-aided engineering and optimization tolls are widely utilized in order to reduce the total development time and cost. Since several simulation tools are involved in the process, information losses, omissions, or errors are common and the importance of seamless information exchange among the tools has been increased. In this work, ISO STEP standards are adopted to represent the neutral format for structural analysis and optimization. The schema of AP209 defined the information of finite element analysis is used and the new schema is proposed to describe the information of structural optimization based on the STEP methodology. The schema is implemented by EXPRESS, information modeling language, and ST-Developer is employed to generate C++ classes and STEP Rose Library by using the schema denoted. To substantiate the proposed approach, the information access interfaces of the finite element modeling software (FEMAP), structural optimization software(GENESIS) and in-house topology optimization program are developed. Examples are shown to validate the information exchange of finite element analysis and structural optimization using STEP standards.

Optimized Polynomial Neural Network Classifier Designed with the Aid of Space Search Simultaneous Tuning Strategy and Data Preprocessing Techniques

  • Huang, Wei;Oh, Sung-Kwun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.911-917
    • /
    • 2017
  • There are generally three folds when developing neural network classifiers. They are as follows: 1) discriminant function; 2) lots of parameters in the design of classifier; and 3) high dimensional training data. Along with this viewpoint, we propose space search optimized polynomial neural network classifier (PNNC) with the aid of data preprocessing technique and simultaneous tuning strategy, which is a balance optimization strategy used in the design of PNNC when running space search optimization. Unlike the conventional probabilistic neural network classifier, the proposed neural network classifier adopts two type of polynomials for developing discriminant functions. The overall optimization of PNNC is realized with the aid of so-called structure optimization and parameter optimization with the use of simultaneous tuning strategy. Space search optimization algorithm is considered as a optimize vehicle to help the implement both structure and parameter optimization in the construction of PNNC. Furthermore, principal component analysis and linear discriminate analysis are selected as the data preprocessing techniques for PNNC. Experimental results show that the proposed neural network classifier obtains better performance in comparison with some other well-known classifiers in terms of accuracy classification rate.

A multilevel framework for decomposition-based reliability shape and size optimization

  • Tamijani, Ali Y.;Mulani, Sameer B.;Kapania, Rakesh K.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.4
    • /
    • pp.467-486
    • /
    • 2017
  • A method for decoupling reliability based design optimization problem into a set of deterministic optimization and performing a reliability analysis is described. The inner reliability analysis and the outer optimization are performed separately in a sequential manner. Since the outer optimizer must perform a large number of iterations to find the optimized shape and size of structure, the computational cost is very high. Therefore, during the course of this research, new multilevel reliability optimization methods are developed that divide the design domain into two sub-spaces to be employed in an iterative procedure: one of the shape design variables, and the other of the size design variables. In each iteration, the probability constraints are converted into equivalent deterministic constraints using reliability analysis and then implemented in the deterministic optimization problem. The framework is first tested on a short column with cross-sectional properties as design variables, the applied loads and the yield stress as random variables. In addition, two cases of curvilinearly stiffened panels subjected to uniform shear and compression in-plane loads, and two cases of curvilinearly stiffened panels subjected to shear and compression loads that vary in linear and quadratic manner are presented.

Multi-objective BESO topology optimization for stiffness and frequency of continuum structures

  • Teimouri, Mohsen;Asgari, Masoud
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.181-190
    • /
    • 2019
  • Topology optimization of structures seeking the best distribution of mass in a design space to improve the structural performance and reduce the weight of a structure is one of the most comprehensive issues in the field of structural optimization. In addition to structures stiffness as the most common objective function, frequency optimization is of great importance in variety of applications too. In this paper, an efficient multi-objective Bi-directional Evolutionary Structural Optimization (BESO) method is developed for topology optimization of frequency and stiffness in continuum structures simultaneously. A software package including a Matlab code and Abaqus FE solver has been created for the numerical implementation of multi-objective BESO utilizing the weighted function method. At the same time, by considering the weaknesses of the optimized structure in single-objective optimizations for stiffness or frequency problems, slight modifications have been done on the numerical algorithm of developed multi-objective BESO in order to overcome challenges due to artificial localized modes, checker boarding and geometrical symmetry constraint during the progressive iterations of optimization. Numerical results show that the proposed Multiobjective BESO method is efficient and optimal solutions can be obtained for continuum structures based on an existent finite element model of the structures.

Development of benthic macroinvertebrate species distribution models using the Bayesian optimization (베이지안 최적화를 통한 저서성 대형무척추동물 종분포모델 개발)

  • Go, ByeongGeon;Shin, Jihoon;Cha, Yoonkyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.4
    • /
    • pp.259-275
    • /
    • 2021
  • This study explored the usefulness and implications of the Bayesian hyperparameter optimization in developing species distribution models (SDMs). A variety of machine learning (ML) algorithms, namely, support vector machine (SVM), random forest (RF), boosted regression tree (BRT), XGBoost (XGB), and Multilayer perceptron (MLP) were used for predicting the occurrence of four benthic macroinvertebrate species. The Bayesian optimization method successfully tuned model hyperparameters, with all ML models resulting an area under the curve (AUC) > 0.7. Also, hyperparameter search ranges that generally clustered around the optimal values suggest the efficiency of the Bayesian optimization in finding optimal sets of hyperparameters. Tree based ensemble algorithms (BRT, RF, and XGB) tended to show higher performances than SVM and MLP. Important hyperparameters and optimal values differed by species and ML model, indicating the necessity of hyperparameter tuning for improving individual model performances. The optimization results demonstrate that for all macroinvertebrate species SVM and RF required fewer numbers of trials until obtaining optimal hyperparameter sets, leading to reduced computational cost compared to other ML algorithms. The results of this study suggest that the Bayesian optimization is an efficient method for hyperparameter optimization of machine learning algorithms.