• Title/Summary/Keyword: engineering optimization

Search Result 11,050, Processing Time 0.03 seconds

2D and 3D Topology Optimization with Target Frequency and Modes of Ultrasonic Horn for Flip-chip Bonding (플립칩 접합용 초음파 혼의 목표 주파수와 모드를 고려한 2차원 및 3차원 위상최적화 설계)

  • Ha, Chang Yong;Lee, Soo Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.1
    • /
    • pp.84-91
    • /
    • 2013
  • Ultrasonic flip-chip bonding needs a precise bonding tool which delivers ultrasonic energy into chip bumps effectively to use the selected resonance mode and frequency of the horn structure. The bonding tool is excited at the resonance frequency and the input and output ports should locate at the anti-nodal points of the resonance mode. In this study, we propose new design method with topology optimization for ultrasonic bonding tools. The SIMP(solid isotropic material with penalization) method is used to formulate topology optimization and OC(optimal criteria) algorithm is adopted for the update scheme. MAC(modal assurance criterion) tracking is used for the target frequency and mode. We fabricate two prototypes of ultrasonic tools which are based on 3D optimization models after reviewing 2D and 3D topology optimization results. The prototypes are satisfied with the ultrasonic frequency and vibration amplitude as the ultrasonic bonding tools.

A developed design optimization model for semi-rigid steel frames using teaching-learning-based optimization and genetic algorithms

  • Shallan, Osman;Maaly, Hassan M.;Hamdy, Osman
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.173-183
    • /
    • 2018
  • This paper proposes a developed optimization model for steel frames with semi-rigid beam-to-column connections and fixed bases using teaching-learning-based optimization (TLBO) and genetic algorithm (GA) techniques. This method uses rotational deformations of frame members ends as an optimization variable to simultaneously obtain the optimum cross-sections and the most suitable beam-to-column connection type. The total cost of members plus connections cost of the frame are minimized. Frye and Morris (1975) polynomial model is used for modeling nonlinearity of semi-rigid connections, and the $P-{\Delta}$ effect and geometric nonlinearity are considered through a stepped analysis process. The stress and displacement constraints of AISC-LRFD (2016) specifications, along with size fitting constraints, are considered in the design procedure. The developed model is applied to three benchmark steel frames, and the results are compared with previous literature results. The comparisons show that developed model using both LTBO and GA achieves better results than previous approaches in the literature.

Study of Reliability-Based Robust Design Optimization Using Conservative Approximate Meta-Models (보수적 근사모델을 적용한 신뢰성 기반 강건 최적설계 방법)

  • Sim, Hyoung Min;Song, Chang Yong;Lee, Jongsoo;Choi, Ha-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.80-85
    • /
    • 2012
  • The methods of robust design optimization (RDO) and reliability-based robust design optimization (RBRDO) were implemented in the present study. RBRDO is an integrated method that accounts for the design robustness of an objective function and for the reliability of constraints. The objective function in RBRDO is expressed in terms of the mean and standard deviation of an original objective function. Thus, a multi-objective formulation is employed. The regressive approximate models are generated via the moving least squares method (MLSM) and constraint-feasible moving least squares method (CF-MLSM), which make it possible to realize the feasibility regardless of the multimodality/nonlinearity of the constraint function during the approximate optimization processes. The regression model based RBRDO is newly devised and its numerical characteristics are explored using the design of an actively controlled ten bar truss structure.

Techno-Economic Optimization of a Grid-Connected Hybrid Energy System Considering Voltage Fluctuation

  • Saib, Samia;Gherbi, Ahmed;Kaabeche, Abdelhamid;Bayindir, Ramazan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.659-668
    • /
    • 2018
  • This paper proposes an optimization approach of a grid-connected photovoltaic and wind hybrid energy system including energy storage considering voltage fluctuation in the electricity grid. A techno-economic analysis is carried out in order to minimize the size of hybrid system by considering the benefit-cost. Lithium-ion battery type is used for both managing the electricity selling to the grid and reducing voltage fluctuation. A new technique is developed to limit the voltage perturbation caused by the solar irradiance and the wind speed through determining the state-of-charge of battery for every hour of a day. Improved particle swarm optimization (PSO) methods, referred to as FC-VACPSO which combines Fast Convergence Particle Swarm Optimization (FCPSO) method and Variable Acceleration Coefficient Based Particle Swarm Optimization (VACPSO) method are used to solve the optimization problem. A comparative study has been performed between standard PSO method and PSO based methods to extract the best size with the benefit cost. A sensitivity analysis has been studied for different kinds and costs of batteries, by considering variable and constant state-ofcharge of battery. The simulations, performed under Matlab environment, yield good results using the FC-VACPSO method regarding the convergence and the benefit cost of the hybrid system.

Multi-Objective Optimization Model of Electricity Behavior Considering the Combination of Household Appliance Correlation and Comfort

  • Qu, Zhaoyang;Qu, Nan;Liu, Yaowei;Yin, Xiangai;Qu, Chong;Wang, Wanxin;Han, Jing
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1821-1830
    • /
    • 2018
  • With the wide application of intelligent household appliances, the optimization of electricity behavior has become an important component of home-based intelligent electricity. In this study, a multi-objective optimization model in an intelligent electricity environment is proposed based on economy and comfort. Firstly, the domestic consumer's load characteristics are analyzed, and the operating constraints of interruptible and transferable electrical appliances are defined. Then, constraints such as household electrical load, electricity habits, the correlation minimization electricity expenditure model of household appliances, and the comfort model of electricity use are integrated into multi-objective optimization. Finally, a continuous search multi-objective particle swarm algorithm is proposed to solve the optimization problem. The analysis of the corresponding example shows that the multi-objective optimization model can effectively reduce electricity costs and improve electricity use comfort.

Surrogate Model Based Approximate Optimization of Passive Type Deck Support Frame for Offshore Plant Float-over Installation

  • Lee, Dong Jun;Song, Chang Yong;Lee, Kangsu
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.131-140
    • /
    • 2021
  • The paper deals with comparative study of various surrogate models based approximate optimization in the structural design of the passive type deck support frame under design load conditions. The passive type deck support frame was devised to facilitate both transportation and installation of 20,000 ton class topside. Structural analysis was performed using the finite element method to evaluate the strength performance of the passive type deck support frame in its initial design stage. In the structural analysis, the strength performances were evaluated for various design load conditions. The optimum design problem based on surrogate model was formulated such that thickness sizing variables of main structure members were determined by minimizing the weight of the passive type deck support frame subject to the strength performance constraints. The surrogate models used in the approximate optimization were response surface method, Kriging model, and Chebyshev orthogonal polynomials. In the context of numerical performances, the solution results from approximate optimization were compared to actual non-approximate optimization. The response surface method among the surrogate models used in the approximate optimization showed the most appropriate optimum design results for the structure design of the passive type deck support frame.

Improved AP Deployment Optimization Scheme Based on Multi-objective Particle Swarm Optimization Algorithm

  • Kong, Zhengyu;Wu, Duanpo;Jin, Xinyu;Cen, Shuwei;Dong, Fang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1568-1589
    • /
    • 2021
  • Deployment of access point (AP) is a problem that must be considered in network planning. However, this problem is usually a NP-hard problem which is difficult to directly reach optimal solution. Thus, improved AP deployment optimization scheme based on swarm intelligence algorithm is proposed to research on this problem. First, the scheme estimates the number of APs. Second, the multi-objective particle swarm optimization (MOPSO) algorithm is used to optimize the location and transmit power of APs. Finally, the greedy algorithm is used to remove the redundant APs. Comparing with multi-objective whale swarm optimization algorithm (MOWOA), particle swarm optimization (PSO) and grey wolf optimization (GWO), the proposed deployment scheme can reduce AP's transmit power and improves energy efficiency under different numbers of users. From the experimental results, the proposed deployment scheme can reduce transmit power about 2%-7% and increase energy efficiency about 2%-25%, comparing with MOWOA. In addition, the proposed deployment scheme can reduce transmit power at most 50% and increase energy efficiency at most 200%, comparing with PSO and GWO.

Probabilistic optimization of nailing system for soil walls in uncertain condition

  • Mitra Jafarbeglou;Farzin Kalantary
    • Geomechanics and Engineering
    • /
    • v.34 no.6
    • /
    • pp.597-609
    • /
    • 2023
  • One of the applicable methods for the stabilization of soil walls is the nailing system which consists of tensile struts. The stability and safety of soil nail wall systems are influenced by the geometrical parameters of the nailing system. Generally, the determination of nailing parameters in order to achieve optimal performance of the nailing system for the safety of soil walls is defined in the framework of optimization problems. Also, according to the various uncertainty in the mechanical parameters of soil structures, it is necessary to evaluate the reliability of the system as a probabilistic problem. In this paper, the optimal design of the nailing system is carried out in deterministic and probabilistic cases using meta-heuristic and reliability-based design optimization methods. The colliding body optimization algorithm and first-order reliability method are used for optimization and reliability analysis problems, respectively. The objective function is defined based on the total cost of nails and safety factors and reliability index are selected as constraints. The mechanical properties of the nailing system are selected as design variables and the mechanical properties of the soil are selected as random variables. The results show that the reliability of the optimally designed soil nail system is very sensitive to uncertainty in soil mechanical parameters. Also, the design results are affected by uncertainties in soil mechanical parameters due to the values of safety factors. Reliability-based design optimization results show that a nailing system can be designed for the expected level of reliability and failure probability.

Finite element computer simulation of twinning caused by plastic deformation of sheet metal

  • Fuyuan Dong;Wang Xu;Zhengnan Wu;Junfeng Hou
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.601-613
    • /
    • 2023
  • Numerous methods have been proposed in predicting formability of sheet metals based on microstructural and macro-scale properties of sheets. However, there are limited number of papers on the optimization problem to increase formability of sheet metals. In the present study, we aim to use novel optimization algorithms in neural networks to maximize the formability of sheet metals based on tensile curve and texture of aluminum sheet metals. In this regard, experimental and numerical evaluations of effects of texture and tensile properties are conducted. The texture effects evaluation is performed using Taylor homogenization method. The data obtained from these evaluations are gathered and utilized to train and validate an artificial neural network (ANN) with different optimization methods. Several optimization method including grey wolf algorithm (GWA), chimp optimization algorithm (ChOA) and whale optimization algorithm (WOA) are engaged in the optimization problems. The results demonstrated that in aluminum alloys the most preferable texture is cube texture for the most formable sheets. On the other hand, slight differences in the tensile behavior of the aluminum sheets in other similar conditions impose no significant decreases in the forming limit diagram under stretch loading conditions.

Particle-Structure Collision Modeling for Topology Optimization (위상최적설계를 위한 입자-구조 충돌 모델)

  • Young Hun Choi;Gil Ho Yoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.6
    • /
    • pp.365-370
    • /
    • 2023
  • This paper presents a particle-structure collision model for topology optimization, which requires sensitivity analysis. Therefore, a new model that incorporates sensitivity analysis is needed. The proposed particle-structure collision model conducts sensitivity analysis for topology optimization. To evaluate the accuracy of the proposed model, it was applied to a simplified one-dimensional collision problem. Optimization of the final positions of particles using topology optimization through this model confirmed the suitability of the proposed approach. These results demonstrate that it is possible to consider particle-structure collision in topology optimization.