• Title/Summary/Keyword: engineering optimization

Search Result 11,050, Processing Time 0.049 seconds

Performance analysis and prediction through various over-provision on NAND flash memory based storage (낸드 플래시 메모리기반 저장 장치에서 다양한 초과 제공을 통한 성능 분석 및 예측)

  • Lee, Hyun-Seob
    • Journal of Digital Convergence
    • /
    • v.20 no.3
    • /
    • pp.343-348
    • /
    • 2022
  • Recently, With the recent rapid development of technology, the amount of data generated by various systems is increasing, and enterprise servers and data centers that have to handle large amounts of big data need to apply high-stability and high-performance storage devices even if costs increase. In such systems, SSD(solid state disk) that provide high performance of read/write are often used as storage devices. However, due to the characteristics of reading and writing on a page-by-page basis, erasing operations on a block basis, and erassing-before-writing, there is a problem that performance is degraded when duplicate writes occur. Therefore, in order to delay this performance degradation problem, over-provision technology of SSD has been applied internally. However, since over-provided technologies have the disadvantage of consuming a lot of storage space instead of performance, the application of inefficient technologies above the right performance has a problem of over-costing. In this paper, we proposed a method of measuring the performance and cost incurred when various over-provisions are applied in an SSD and predicting the system-optimized over-provided ratio based on this. Through this research, we expect to find a trade-off with costs to meet the performance requirements in systems that process big data.

A Deep Learning-based Real-time Deblurring Algorithm on HD Resolution (HD 해상도에서 실시간 구동이 가능한 딥러닝 기반 블러 제거 알고리즘)

  • Shim, Kyujin;Ko, Kangwook;Yoon, Sungjoon;Ha, Namkoo;Lee, Minseok;Jang, Hyunsung;Kwon, Kuyong;Kim, Eunjoon;Kim, Changick
    • Journal of Broadcast Engineering
    • /
    • v.27 no.1
    • /
    • pp.3-12
    • /
    • 2022
  • Image deblurring aims to remove image blur, which can be generated while shooting the pictures by the movement of objects, camera shake, blurring of focus, and so forth. With the rise in popularity of smartphones, it is common to carry portable digital cameras daily, so image deblurring techniques have become more significant recently. Originally, image deblurring techniques have been studied using traditional optimization techniques. Then with the recent attention on deep learning, deblurring methods based on convolutional neural networks have been actively proposed. However, most of them have been developed while focusing on better performance. Therefore, it is not easy to use in real situations due to the speed of their algorithms. To tackle this problem, we propose a novel deep learning-based deblurring algorithm that can be operated in real-time on HD resolution. In addition, we improved the training and inference process and could increase the performance of our model without any significant effect on the speed and the speed without any significant effect on the performance. As a result, our algorithm achieves real-time performance by processing 33.74 frames per second at 1280×720 resolution. Furthermore, it shows excellent performance compared to its speed with a PSNR of 29.78 and SSIM of 0.9287 with the GoPro dataset.

Improvement of Optimal Bus Headway for Intermodal Transfer Station (교통수단간 연계를 위한 최적 버스 배차간격 조정 알고리즘 개발)

  • Ryu, Byoungyong;Yang, Seungtae;Bae, Sanghoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1D
    • /
    • pp.17-23
    • /
    • 2009
  • Due to the rapid increase of vehicles on the street, Korean society is facing worsening traffic congestions and air pollutions. Also, the oil price pickup has led to increasing need for the use of public transportation. In particular, transfering among public transportation may be a main factor for riders who are commuting for a long distance journey. In order to ensure such connectivity, transfer stations have been actively built in Korea. However, it would be necessary to shift those vehicles, from cars to public transportations by enhancing the users' satisfaction with public transportation through strategies for minimizing the users' waiting cost by building an efficient connective system between transportation modes as well as the preparation of aforementioned transfer stations. Therefore, this study aimed to develop an algorithm for minimizing transferring passengers' waiting costs based on service intervals of linked buses within the transfer facilities. In order to adjust the service interval, we calculated the total costs, involving the wait cost of transfer passengers and bus operation costs, and produced an allocation interval, that would minimize the costs. We selected a KTX departing from Seoul station, and a No. 6014 bus route in Gwangmyeong city where it starts from the Gwangmyeong station in order to for verifying the model. Then, the transfer passengers' total waitting cost was reduced equivalent to the maximum of 212 minutes, and it revealed that the model performed very effectively.

Driver Route Choice Models for Developing Real-Time VMS Operation Strategies (VMS 실시간 운영전략 구축을 위한 운전자 경로선택모형)

  • Kim, SukHee;Choi, Keechoo;Yu, JeongWhon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.409-416
    • /
    • 2006
  • Real-time traveler information disseminated through Variable Message Signs (VMS) is known to have effects on driver route choice decisions. In the past, many studies have attempted to optimize the system performance using VMS message content as the primary control variable of driver route choice. This research proposes a VMS information provision optimization model which searches the best combination of VMS message contents and display sequence to minimize the total travel time on a highway network considered. The driver route choice models under VMS information provision are developed using a stated preference (SP) survey data in order to realistically capture driver response behavior. The genetic algorithm (GA) is used to find the optimal VMS information provision strategies which consists of the VMS message contents and the sequence of message display. In the process of the GA module, the system performance is measured using micro traffic simulation. The experiment results highlight the capability of the proposed model to search the optimal solution in an efficient way. The results show that the traveler information conveyed via VMS can reduce the total travel time on a highway network. They also suggest that as the frequency of VMS message update gets shorter, a smaller number of VMS message contents performs better to reduce the total travel time, all other things being equal.

Tensile Force Estimation of Externally Prestressed Tendon Using SI technique Based on Differential Evolutionary Algorithm (차분 진화 알고리즘 기반의 SI기법을 이용한 외부 긴장된 텐던의 장력추정)

  • Noh, Myung-Hyun;Jang, Han-Taek;Lee, Sang-Youl;Park, Taehyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.9-18
    • /
    • 2009
  • This paper introduces the application of DE (Differential Evolutionary) method for the estimation of tensile force of the externally prestressed tendon. The proposed technique, a SI (System Identification) method using the DE algorithm, can make global solution search possible as opposed to classical gradient-based optimization techniques. The numerical tests show that the proposed technique employing DE algorithm is a useful method which can detect the effective nominal diameters as well as estimate the exact tensile forces of the externally prestressed tendon with an estimation error less than 1% although there is no a priori information about the identification variables. In addition, the validity of the proposed technique is experimentally proved using a scale-down model test considering the serviceability state condition without and with the loss of the prestressed force. The test results prove that the technique is a feasible and effective method that can not only estimate the exact tensile forces and detect the effective nominal diameters but also inspect the damping properties of test model irrespective of the loss of the prestressed force. The 2% error of the estimated effective nominal diameter is due to the difference between the real tendon diameter with a wired section and the FE model diameter with a full-section. Finally, The accuracy and superiority of the proposed technique using the DE algorithm are verified through the comparative study with the existing theories.

Breast Cancer Histopathological Image Classification Based on Deep Neural Network with Pre-Trained Model Architecture (사전훈련된 모델구조를 이용한 심층신경망 기반 유방암 조직병리학적 이미지 분류)

  • Mudeng, Vicky;Lee, Eonjin;Choe, Se-woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.399-401
    • /
    • 2022
  • A definitive diagnosis to classify the breast malignancy status may be achieved by microscopic analysis using surgical open biopsy. However, this procedure requires experts in the specializing of histopathological image analysis directing to time-consuming and high cost. To overcome these issues, deep learning is considered practically efficient to categorize breast cancer into benign and malignant from histopathological images in order to assist pathologists. This study presents a pre-trained convolutional neural network model architecture with a 100% fine-tuning scheme and Adagrad optimizer to classify the breast cancer histopathological images into benign and malignant using a 40× magnification BreaKHis dataset. The pre-trained architecture was constructed using the InceptionResNetV2 model to generate a modified InceptionResNetV2 by substituting the last layer with dense and dropout layers. The results by demonstrating training loss of 0.25%, training accuracy of 99.96%, validation loss of 3.10%, validation accuracy of 99.41%, test loss of 8.46%, and test accuracy of 98.75% indicated that the modified InceptionResNetV2 model is reliable to predict the breast malignancy type from histopathological images. Future works are necessary to focus on k-fold cross-validation, optimizer, model, hyperparameter optimization, and classification on 100×, 200×, and 400× magnification.

  • PDF

GIS Optimization for Bigdata Analysis and AI Applying (Bigdata 분석과 인공지능 적용한 GIS 최적화 연구)

  • Kwak, Eun-young;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.171-173
    • /
    • 2022
  • The 4th industrial revolution technology is developing people's lives more efficiently. GIS provided on the Internet services such as traffic information and time information makes people getting more quickly to destination. National geographic information service(NGIS) and each local government are making basic data to investigate SOC accessibility for analyzing optimal point. To construct the shortest distance, the accessibility from the starting point to the arrival point is analyzed. Applying road network map, the starting point and the ending point, the shortest distance, the optimal accessibility is calculated by using Dijkstra algorithm. The analysis information from multiple starting points to multiple destinations was required more than 3 steps of manual analysis to decide the position for the optimal point, within about 0.1% error. It took more time to process the many-to-many (M×N) calculation, requiring at least 32G memory specification of the computer. If an optimal proximity analysis service is provided at a desired location more versatile, it is possible to efficiently analyze locations that are vulnerable to business start-up and living facilities access, and facility selection for the public.

  • PDF

Empirical and Numerical Analyses of a Small Planing Ship Resistance using Longitudinal Center of Gravity Variations (경험식과 수치해석을 이용한 종방향 무게중심 변화에 따른 소형선박의 저항성능 변화에 관한 연구)

  • Michael;Jun-Taek Lim;Nam-Kyun Im;Kwang-Cheol Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.971-979
    • /
    • 2023
  • Small ships (<499 GT) constitute 46% of the existing ships, therefore, it can be concluded that they produce relatively high CO2 gas emissions. Operating in optimal trim conditions can reduce the resistance of the ship, which results in fewer greenhouse gases. An affordable way for trim optimization is to adjust the weight distribution to obtain an optimum longitudinal center of gravity (LCG). Therefore, in this study, the effect of LCG changes on the resistance of a small planing ship is studied using empirical and numerical analyses. The Savitsky method employing Maxsurf resistance and the STAR-CCM+ commercial computational fluid dynamics (CFD) software is used for the empirical and numerical analyses, respectively. Finally, the total resistance from the ship design process is compared to obtain the optimum LCG. To summarize, using numerical analysis, optimum LCG is achieved at the 46.2% length overall (LoA) at Froude Number 0.56, and 43.4% LoA at Froude Number 0.63, which provides a significant resistance reduction of 41.12 - 45.16% compared to the reference point at 29.2% LoA.

A study on end-to-end speaker diarization system using single-label classification (단일 레이블 분류를 이용한 종단 간 화자 분할 시스템 성능 향상에 관한 연구)

  • Jaehee Jung;Wooil Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.536-543
    • /
    • 2023
  • Speaker diarization, which labels for "who spoken when?" in speech with multiple speakers, has been studied on a deep neural network-based end-to-end method for labeling on speech overlap and optimization of speaker diarization models. Most deep neural network-based end-to-end speaker diarization systems perform multi-label classification problem that predicts the labels of all speakers spoken in each frame of speech. However, the performance of the multi-label-based model varies greatly depending on what the threshold is set to. In this paper, it is studied a speaker diarization system using single-label classification so that speaker diarization can be performed without thresholds. The proposed model estimate labels from the output of the model by converting speaker labels into a single label. To consider speaker label permutations in the training, the proposed model is used a combination of Permutation Invariant Training (PIT) loss and cross-entropy loss. In addition, how to add the residual connection structures to model is studied for effective learning of speaker diarization models with deep structures. The experiment used the Librispech database to generate and use simulated noise data for two speakers. When compared with the proposed method and baseline model using the Diarization Error Rate (DER) performance the proposed method can be labeling without threshold, and it has improved performance by about 20.7 %.

Analysis of the Effectiveness of Big Data-Based Six Sigma Methodology: Focus on DX SS (빅데이터 기반 6시그마 방법론의 유효성 분석: DX SS를 중심으로)

  • Kim Jung Hyuk;Kim Yoon Ki
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.13 no.1
    • /
    • pp.1-16
    • /
    • 2024
  • Over recent years, 6 Sigma has become a key methodology in manufacturing for quality improvement and cost reduction. However, challenges have arisen due to the difficulty in analyzing large-scale data generated by smart factories and its traditional, formal application. To address these limitations, a big data-based 6 Sigma approach has been developed, integrating the strengths of 6 Sigma and big data analysis, including statistical verification, mathematical optimization, interpretability, and machine learning. Despite its potential, the practical impact of this big data-based 6 Sigma on manufacturing processes and management performance has not been adequately verified, leading to its limited reliability and underutilization in practice. This study investigates the efficiency impact of DX SS, a big data-based 6 Sigma, on manufacturing processes, and identifies key success policies for its effective introduction and implementation in enterprises. The study highlights the importance of involving all executives and employees and researching key success policies, as demonstrated by cases where methodology implementation failed due to incorrect policies. This research aims to assist manufacturing companies in achieving successful outcomes by actively adopting and utilizing the methodologies presented.