• Title/Summary/Keyword: engineering optimization

Search Result 11,061, Processing Time 0.038 seconds

Method to Improve Localization and Mapping Accuracy on the Urban Road Using GPS, Monocular Camera and HD Map (GPS와 단안카메라, HD Map을 이용한 도심 도로상에서의 위치측정 및 맵핑 정확도 향상 방안)

  • Kim, Young-Hun;Kim, Jae-Myeong;Kim, Gi-Chang;Choi, Yun-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1095-1109
    • /
    • 2021
  • The technology used to recognize the location and surroundings of autonomous vehicles is called SLAM. SLAM standsfor Simultaneously Localization and Mapping and hasrecently been actively utilized in research on autonomous vehicles,starting with robotic research. Expensive GPS, INS, LiDAR, RADAR, and Wheel Odometry allow precise magnetic positioning and mapping in centimeters. However, if it can secure similar accuracy as using cheaper Cameras and GPS data, it will contribute to advancing the era of autonomous driving. In this paper, we present a method for converging monocular camera with RTK-enabled GPS data to perform RMSE 33.7 cm localization and mapping on the urban road.

A Repository Utilization System to optimize maintenance of IIoT-based main point Utilities (IIoT 기반한 핵심유틸리티의 유지보수 최적화를 위한 공동 활용 시스템)

  • Lee, Byung-Ok;Lee, Kun-Woo;Kim, Young-Gon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.89-94
    • /
    • 2021
  • Recently, manufacturing companies are introducing many intelligent production processes that apply IIoT/ICT to improve competitiveness, and a system that maintains availability, improves productivity, and optimizes management costs is needed as a preventive measure using environmental data generated from air ejectors. Therefore, in this study, a dedicated control board was developed and LoRa communication module was applied to remotely control it to collect and manage information about compressors from cloud servers and to ensure that all operators and administrators utilize common data in real time. This dramatically reduced M/S steps, increased system operational availability, and reduced local server operational burden. It dramatically reduced maintenance latency by sharing system failure conditions and dramatically improved cost and space problems by providing real-time status detection through wired and mobile utilization by maintenance personnel.

Design and Simulation of an On-body Microstrip Patch Antenna for Lower Leg Osteoporosis Monitoring (하지 골다공증 감시를 위한 온-바디 마이크로 스트립 패치 안테나의 설계 및 모의실험)

  • Kim, Byung-Mun;Yun, Lee-Ho;Lee, Sang-Min;Park, Young-Ja;Hong, Jae-Pyo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.763-770
    • /
    • 2021
  • In this paper, in order to exclude the influence of BAN(Body Area Network) signals operating in the ISM band, the design and optimization process of an on-body microstrip patch antenna operating at 4.567 GHz is presented. The antenna for the monitoring of the lower legs with cancellous osteoporosis is designed to be lightweight and compact with improved return loss and bandwidth. The structure around the applied lower leg consisted of a five-layer dielectric plane. Taking into account losses, the complex dielectric constant of each layer is calculated using multi Cole-Cole model parameters, whereas a unipolar model is used for normal or osteoporotic cancellous bones. The return loss of the coaxial feed antenna on the phantom is -67.26 dB at 4.567 GHz, and in the case of osteoporosis, at the same frequency the return loss difference is 35.88 dB, and the resonance frequency difference is about 7 MHz.

Investigation of the suitability of new developed epoxy based-phantom for child's tissue equivalency in paediatric radiology

  • Yucel, Haluk;Safi, Aziz
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4158-4165
    • /
    • 2021
  • In this study, tissue equivalency (TE) of a newly developed epoxy-based phantom to 3-5 years child's tissue was investigated in paediatric energy range. Epoxy-based TE-phantoms were produced at different glandular/adipose (G/A) ratios of 17/83%, 31/69%, 36/64% and 10/90%. A procedure was developed in which specific amounts of boron, calcium, magnesium, sulphur compounds are mixed with epoxy resin, together with other minor substitutes. In paediatric energy range of 40-60 kVp half-value layer (HVL) values were measured and then Hounsfield Units (HU) were determined from Computed Tomography(CT) scans taken in the X-ray energy range of 80-120kVp. It is found that radiation absorption properties of these phantoms in terms of the measured HVL values related to linear attenuation coefficients (µ) are very well mimicking a 3 years child's soft tissue in case a ratio of 10/90%G/A. Additionally, the HU values of phantoms were determined from the CT scans. The HU = 47.8 ± 4.8 value was found for the epoxy-based phantom produced at a ratio of 10/90%G/A. The obtained HVL and HU values also support the suitability of the new epoxy based-phantom produced at a ratio of 10/90%G/A for a satisfactory mimicking a 3 years child's soft tissue by 5%. Thus they can have a potential use to perform the quality controls of medical X-ray systems and dose optimization studies.

Mathematical Programming and Optimization of the Resource Allocation and Deployment for Disaster Response : AED case study (수리계획법을 활용한 방재자원 배치 최적화: AED 배치 사례)

  • Hwang, Seongeun;Lee, Nagyeong;Jang, Dongkuk;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.3
    • /
    • pp.53-58
    • /
    • 2021
  • The number of patients with cardiovascular diseases who experience an out-of-hospital cardiac arrest (OHCA) are increasing among young adults as well as the aged population. An automated external defibrillator (AED) is vital in improving survival rates of OHCA victims. Survival rates of OHCA were shown to decline exponentially in time to defibrillation, yet studies in Korea are uncommon that captures the properties of their survival rates in examining optimal locations of AEDs. In this study, we worked on the maximal gradual coverage location problem (MGCLP) with exponential decay coverage function to decide on their optimal locations. The exponential decay coverage function mitigates the drawback of over-estimating survival rates of OHCA patients. It is expected that a more sophisticated facility location problem will be developed to identify the "emergent" characteristics of pedestrians who responds to the OHCA occurrence by incorporating random pedestrian locations and movement through simulation.

A Study on an Operational Optimization Algorithm of Software Basic Education (소프트웨어 기초 교육의 최적 운영 알고리즘에 관한 연구)

  • Goo, Eun-Hee;Woo, Chan-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.587-592
    • /
    • 2019
  • The importance of software technologies is becoming more prominent because of the competition to secure a competitive edge in software, which has been intensified since the emergence of smartphones and IoT. Thus, to assure the initiative in the global software industry and to foster superior human resources, there is a growing need for outstanding software development professionals. This paper analyzes the factors that affect the basic perception of software, the need for software development, and the enhancement of software coding ability based on a compulsory software class, which aims to increase the workforce of the converged software industry. The analysis shows that among other technical practices to enhance coding ability, learner-centered technical contents showed the most positive effect regarding the recognition and motive of development and are an essential factor in improving coding skills. The findings indicate that the need for program development and active involvement in the development of the program are the most important factors in improving the practical ability. The analysis presents meaningful results by suggesting a methodology for improving software development capabilities.

Effects of superimposed cyclic operation on corrosion products activity in reactor cooling system of AP-1000

  • Mahmood, Fiaz;Hu, Huasi;Lu, Guichi;Ni, Si;Yuan, Jiaqi
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1109-1116
    • /
    • 2019
  • It is essential to predict the radioactivity distribution around the reactor cooling system (RCS) during obligatory cyclic operation of AP-1000. A home-developed program CPA-AP1000 is upgraded to predict the response of activated corrosion products (ACPs) in the RCS. The program is written in MATLAB and it uses state of the art MCNP as a subroutine for flux calculations. A pair of cyclic power profiles were superimposed after initial full power operation. The effect of cyclic operation is noticed to be more prominent for in-core surfaces, followed by the primary coolant and out-of-core structures. The results have shown that specific activity trends of $^{56}Mn$ and $^{24}Na$ promptly follow the power variations, whereas, $^{59}Fe$, $^{58}Co$, $^{99}Mo$ and $^{60}Co$ exhibit a sluggish power-following response. The investigations pointed out that promptly power-following response of ACPs in the coolant is vital as an instant radioactivity source during leakage incidents. However, the ACPs with delayed power-following response in the out-of-core components are perceived to cause a long-term activity. The present results are found in good agreement with those for a reference PWR. The results are useful for source term monitoring and optimization of work procedures for an innovative reactor design.

Kinetic Model of Steam-Methane Reforming Reactions over Ni-Based Catalyst (니켈기반 촉매를 사용한 메탄가스-수증기 개질반응의 모사)

  • Lee, HongJin;Kim, Woohyun;Lee, Kyubock;Yoon, Wang Lai
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.914-920
    • /
    • 2018
  • The intrinsic kinetic parameters of steam-methane reforming reactions over commercial nickel-based catalyst were determined. The reaction rate equations were derived from the reaction mechanism-based Langmuir-Hinshelwood chemisorption theory. As the experimental variables for the kinetic study, the reaction temperature ranged from 630 to $750^{\circ}C$ and the steam-to-carbon ratio also varied from 2.7 to 3.5. Based on the experimental data, the efficient optimization algorithm was used to determine the intrinsic kinetic parameters due to the high-dimensional objective function. It is confirmed that the parameter estimation results showed good agreement with the experimental values. Thus, this proposed mathematical reaction model can be used as the basic information to design a catalytic reactor and to optimize operating conditions.

Finite Element Model Updating of Structures Using Deep Neural Network (깊은 신경망을 이용한 구조물의 유한요소모델 업데이팅)

  • Gong, Ming;Park, Wonsuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.147-154
    • /
    • 2019
  • The finite element model updating can be defined as the problem of finding the parameters of the finite element model which gives the closest response to the actual response of the structure by measurement. In the previous researches, optimization based methods have been developed to minimize the error of the response of the actual structure and the analytical model. In this study, we propose an inverse eigenvalue problem that can directly obtain the parameters of the finite element model from the target mode information. Deep Neural Networks are constructed to solve the inverse eigenvalue problem quickly and accurately. As an application example of the developed method, the dynamic finite element model update of a suspension bridge is presented in which the deep neural network simulating the inverse eigenvalue function is utilized. The analysis results show that the proposed method can find the finite element model parameters corresponding to the target modes with very high accuracy.

Combinatorial Fine-Tuning of Phospholipase D Expression by Bacillus subtilis WB600 for the Production of Phosphatidylserine

  • Huang, Tingting;Lv, Xueqin;Li, Jianghua;Shin, Hyun-dong;Du, Guocheng;Liu, Long
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.12
    • /
    • pp.2046-2056
    • /
    • 2018
  • Phospholipase D has great commercial value due to its transphosphatidylation products that can be used in the food and medicine industries. In order to construct a strain for use in the production of PLD, we employed a series of combinatorial strategies to increase PLD expression in Bacillus subtilis WB600. These strategies included screening of signal peptides, selection of different plasmids, and optimization of the sequences of the ribosome-binding site (RBS) and the spacer region. We found that using the signal peptide amyE results in the highest extracellular PLD activity (11.3 U/ml) and in a PLD expression level 5.27-fold higher than when the endogenous signal peptide is used. Furthermore, the strain harboring the recombinant expression plasmid pMA0911-PLD-amyE-his produced PLD with activity enhanced by 69.03% (19.1 U/ml). We then used the online tool \RBS Calculator v2.0 to optimize the sequences of the RBS and the spacer. Using the optimized sequences resulted in an increase in the enzyme activity by about 26.7% (24.2 U/ml). In addition, we found through a transfer experiment that the retention rate of the recombinant plasmid after 5 generations was still 100%. The final product, phosphatidylserine (PS), was successfully detected, with transphosphatidylation selectivity at 74.6%. This is similar to the values for the original producer.