• Title/Summary/Keyword: engineering optimization

Search Result 11,061, Processing Time 0.04 seconds

Geostationary Satellite Launch Site and Orbit Injection (정지궤도위성 발사위치와 궤도투입에 관한 고찰)

  • DONG-SUN KIM
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.3
    • /
    • pp.27-33
    • /
    • 2024
  • According to the success of the Nuri Space Launch Vehicle (KSLV-II) and the development goal of the next generation space launch vehicle (KSLV-III), it is expected that the domestic geostationary satellite capability will be increased from (1 to 3.7) ton. Also, it is predicted that substantial ability of about 1 ton can be provided for the space exploration of the Moon, Mars, asteroids, etc. The Goheung space launch site is optimized for sun-synchronous small satellites, and due to the essential precondition that the launch trajectory does not impinge another country's sovereign airspace, it is not satisfactory as a geostationary satellite launching site. Its latitude also requires more energy to shape the rotating orbital plane from the initial injection status. This results in a decreasing factor of economic feasibility, including the operating complexity. Therefore, in parallel with the development of a next generation space launch vehicle, the practical process for acquisition of oversea land or sea space launch site near the Earth's equator and research for the optimization of orbiting methods of geostationary satellite injection must be continued.

Adaptive Enhancement of Low-light Video Images Algorithm Based on Visual Perception (시각 감지 기반의 저조도 영상 이미지 적응 보상 증진 알고리즘)

  • Li Yuan;Byung-Won Min
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.51-60
    • /
    • 2024
  • Aiming at the problem of low contrast and difficult to recognize video images in low-light environment, we propose an adaptive contrast compensation enhancement algorithm based on human visual perception. First of all, the video image characteristic factors in low-light environment are extracted: AL (average luminance), ABWF (average bandwidth factor), and the mathematical model of human visual CRC(contrast resolution compensation) is established according to the difference of the original image's grayscale/chromaticity level, and the proportion of the three primary colors of the true color is compensated by the integral, respectively. Then, when the degree of compensation is lower than the bright vision precisely distinguishable difference, the compensation threshold is set to linearly compensate the bright vision to the full bandwidth. Finally, the automatic optimization model of the compensation ratio coefficient is established by combining the subjective image quality evaluation and the image characteristic factor. The experimental test results show that the video image adaptive enhancement algorithm has good enhancement effect, good real-time performance, can effectively mine the dark vision information, and can be widely used in different scenes.

Assessment of Co-benefit and Trade-off Effects of Nature-based Solutions on Carbon Storage Capacity and Biodiversity (자연기반해법의 탄소저장과 생물다양성의 공동·상쇄 효과 평가)

  • Kim, Da-seul;Lee, Dong-kun;Hwang, Heymee;Heo, Su-jeong;Yun, Seok-hwan;Kim, Eun-sub
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.27 no.1
    • /
    • pp.45-54
    • /
    • 2024
  • This study developed a model to evaluate the co-benefits and trade-off effects between biodiversity and carbon storage capacity based on the implementation locations of nature-based solutions. The model aims to propose optimal implementation locations by using the conceptual idea of edge effects for carbon storage and connectivity for biodiversity. The co-benefits were considered by simultaneously taking into account two effects rather than a single effect. Trade-off effects were observed among optimal plans through a comparison of benefits. The NSGA-II multi-objective optimization algorithm was utilized, confirming the identification of Pareto-optimal solutions. The implementation patterns of Pareto-optimal solutions for green areas were examined. This study holds significance in proposing optimal locations by evaluating various co-benefits and trade-off effects of nature-based solutions. By advancing models based on this evaluation framework, it is anticipated that the assessment of co-benefits and trade-off effects among various benefits of nature-based solutions, such as climate change mitigation, enhancement of biodiversity, and provision of ecosystem services, can be accomplished.

A study on the performance improvement of the quality prediction neural network of injection molded products reflecting the process conditions and quality characteristics of molded products by process step based on multi-tasking learning structure (다중 작업 학습 구조 기반 공정단계별 공정조건 및 성형품의 품질 특성을 반영한 사출성형품 품질 예측 신경망의 성능 개선에 대한 연구)

  • Hyo-Eun Lee;Jun-Han Lee;Jong-Sun Kim;Gu-Young Cho
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.72-78
    • /
    • 2023
  • Injection molding is a process widely used in various industries because of its high production speed and ease of mass production during the plastic manufacturing process, and the product is molded by injecting molten plastic into the mold at high speed and pressure. Since process conditions such as resin and mold temperature mutually affect the process and the quality of the molded product, it is difficult to accurately predict quality through mathematical or statistical methods. Recently, studies to predict the quality of injection molded products by applying artificial neural networks, which are known to be very useful for analyzing nonlinear types of problems, are actively underway. In this study, structural optimization of neural networks was conducted by applying multi-task learning techniques according to the characteristics of the input and output parameters of the artificial neural network. A structure reflecting the characteristics of each process step was applied to the input parameters, and a structure reflecting the quality characteristics of the injection molded part was applied to the output parameters using multi-tasking learning. Building an artificial neural network to predict the three qualities (mass, diameter, height) of injection-molded product under six process conditions (melt temperature, mold temperature, injection speed, packing pressure, pacing time, cooling time) and comparing its performance with the existing neural network, we observed enhancements in prediction accuracy for mass, diameter, and height by approximately 69.38%, 24.87%, and 39.87%, respectively.

Membrane-Based Direct Air Capture: A Review (막 기반 직접공기포집: 총설)

  • Seong Baek Yang;Kwang-Seop Im;Km Nikita;Sang Yong Nam
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.85-95
    • /
    • 2024
  • Direct air capture (DAC) technology plays a crucial role in mitigating climate change. Reports from the International Energy Agency and climate change emphasize its significance, aiming to limit global warming to 1.5 ℃ despite continuous carbon emissions. Despite initial costs, DAC technology demonstrates potential for cost reductions through research and development, operational learning, and economies of scale. Recent advancements in high-permeance polymer membranes indicate the potential of membrane-based DAC technology. However, effective separation of CO2 from ambient air requires membranes with high selectivity and permeability to CO2. Current research is focusing on membrane optimization to enhance CO2 capture efficiency. This study underscores the importance of direct air capture, evolving cost trends, and the pivotal role of membrane development in climate change mitigation efforts. Additionally, this research delved into the theoretical background, conditions, composition, advantages, and disadvantages of permeance and selectivity in membrane-based DAC.

Applications of Artificial Intelligence in MR Image Acquisition and Reconstruction (MRI 신호획득과 영상재구성에서의 인공지능 적용)

  • Junghwa Kang;Yoonho Nam
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.6
    • /
    • pp.1229-1239
    • /
    • 2022
  • Recently, artificial intelligence (AI) technology has shown potential clinical utility in a wide range of MRI fields. In particular, AI models for improving the efficiency of the image acquisition process and the quality of reconstructed images are being actively developed by the MR research community. AI is expected to further reduce acquisition times in various MRI protocols used in clinical practice when compared to current parallel imaging techniques. Additionally, AI can help with tasks such as planning, parameter optimization, artifact reduction, and quality assessment. Furthermore, AI is being actively applied to automate MR image analysis such as image registration, segmentation, and object detection. For this reason, it is important to consider the effects of protocols or devices in MR image analysis. In this review article, we briefly introduced issues related to AI application of MR image acquisition and reconstruction.

A Combined Greedy Neighbor Generation Method of Local Search for the Traveling Salesman Problem

  • Yongho Kim;Junha Hwang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.4
    • /
    • pp.1-8
    • /
    • 2024
  • The traveling salesman problem(TSP) is one of the well known combinatorial optimization problems. Local search has been used as a method to solve TSP. Greedy Random Insertion(GRI) is known as an effective neighbor generation method for local search. GRI selects some cities from the current solution randomly and inserts them one by one into the best position of the current partial solution considering only one city at a time. We first propose another greedy neighbor generation method which is named Full Greedy Insertion(FGI). FGI determines insertion location one by one like GRI, but considers all remaining cities at once. And then we propose a method to combine GRI with FGI, in which GRI or FGI is randomly selected and executed at each iteration in simulated annealing. According to the experimental results, FGI alone does not necessarily perform very well. However, we confirmed that the combined method outperforms the existing local search methods including GRI.

Evaluation of Evacuation Safety in University Libraries Based on Pathfinder

  • Zechen Zhang;Jaewook Lee;Hasung Kong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.237-246
    • /
    • 2024
  • In recent years, the frequent occurrence of fire accidents in university libraries has posed significant threats to the safety of students' lives and property, alongside negative social impacts. Accurately analyzing the factors affecting evacuation during library fires and proposing optimized measures for safe evacuation is thus crucial. This paper utilizes a specific university library as a case study, simulating fire evacuation scenarios using the Pathfinder software, to assess and validate evacuation strategies and propose relevant optimizations. Pathfinder, developed by Thunderhead Engineering in the United States, is an intuitive and straightforward personnel emergency evacuation assessment system, offering advanced visualization interfaces and 3D animation effects. This study aims to construct evacuation models and perform simulation analysis for the selected university library using Pathfinder. The library's structural layout, people flow characteristics, and the nature of fire and smoke spread are considered in the analysis. Additionally, evacuation scenarios involving different fire outbreak locations and the status of emergency exits are examined. The findings underscore the importance of effective evacuation in fire situations, highlighting how environmental conditions, individual characteristics, and behavioral patterns significantly influence evacuation efficiency. Through these investigations, the study enhances understanding and optimization of evacuation strategies in fire scenarios, thereby improving safety and efficiency. The research not only provides concrete and practical guidelines for building design, management, and emergency response planning in libraries but also offers valuable insights for the design and management of effective evacuation systems in buildings, crucial for ensuring occupant safety and minimizing loss of life in potential hazard situations

Analysis of Key Parameters for the Printing Process Optimization of a Fluid Dispensing Systems (유체 디스펜싱 시스템의 프린팅 프로세스 최적화를 위한 주요 파라미터 분석)

  • Hoseung Kang;Haechang Jeong;Soonho Hong;Nam Kyung Yoon;Sunyoung Sohn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.382-393
    • /
    • 2024
  • The Microplotter system with a fluid dispensing method, sprays fluid based on ultrasonic pumping through piezoelectric devices. This technique can possible for various materials with a wide range of viscosities to be printed in microscale. In this paper, we introduces dispenser printing technology as well as aim to understand and apply various processes using the equipment. In addition, we will explain how to optimize the equipment by adjusting parameters such as spray intensity, tip height during printing, and patterning speed. By utilizing Microplotter's advantage of being compatible with a wide range of fluids, including metal nanoparticles, carbon nanotubes, DNA, and proteins, it is expected to be used in various fields such as printed electronics, biotechnology, and chemical engineering.

A New Composite Wall Inner Tie System Applied in Reinforced Concrete Modular Integrated Construction

  • Xiaokang ZOU;Jiang HUANG;Wenjie LU;Jun SHI;Zhen ZHAO;Tian SHI
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.85-92
    • /
    • 2024
  • Reinforced concrete modular integrated construction (MiC) has been widely used in Hong Kong nowadays, but the solutions for temporary tying of the side walls during the construction of the composite wall have still shortcomings. Based on a MiC project in Hong Kong, this paper proposes a new inner tie system for composite wall. The system components are installed on the side walls of precast modules without penetrating through the side walls. After the loop is rotated to contact the hook, the tying effect can be generated when the concrete is poured on site between the middle gap of two modules. This system replaces tie bolts penetrating through precast side walls, so that the modules' interior fitting-out can be fully completed in factory and the on-site construction has no adverse effects on the internal decoration. This paper mainly describes the mechanism of the system, FEA simulation and optimization of the member size, as well as tensile and punching shear tests to verify the reliability, safety and to get more information about failure mode of the system. The system will be further examined by assembling 1:1 mockup modules, and finally applied to a real MiC project soon. The system can also act as permanent tie bars for the composite wall to reduce the total wall thickness, save the structural cost and increase the usable area. Compared with other existing tying methods in the industry, the system is easy to install, reliable to take loads, adaptable to large construction errors, and has the potential to be widely used in future practical projects.