• Title/Summary/Keyword: engineering measurement

Search Result 17,022, Processing Time 0.043 seconds

Microscopic Influence of Temperature on Carbonation for Marine Concrete Structure (항만콘크리트 구조물의 탄산화에 미치는 온도의 미세구조적 영향)

  • Han, Sang-Hun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.4
    • /
    • pp.272-278
    • /
    • 2010
  • Some recent researches reported that high temperature rising decreases the carbonation depth of concrete, which is contrary to the previous research results. Carbonation has been known as a reaction between calcium hydroxide and carbon dioxide. But a few researches showed that the other cement hydrates as well as calcium hydroxide react with carbon dioxide. This paper investigates the influence of temperature on carbonation and the variation of $Ca(OH)_2$ and $CaCO_3$ by carbonation. In order to estimate the carbonation depth and the quantities of reactant and product of carbonation reaction, phenolphthalein testing and thermagravimetric analyzer test were conducted. The measurement of carbonation depth with temperature showed that the temperature increase from $20^{\circ}C$ to $30^{\circ}C$C in carbonation environment makes the carbonation depth larger, but the increase from $30^{\circ}C$ to $40^{\circ}C$ has a small influence on the carbonation depth. Comparing calcium hydroxide and calcium carbonate with temperature, the quantity of $CaCO_3$ of specimen carbonated at $30^{\circ}C$ is greater than that of specimen carbonated at $40^{\circ}C$ and the quantity of $Ca(OH)_2$ of specimen carbonated at $30^{\circ}C$ is similar to that of specimen carbonated at $40^{\circ}C$. This observation shows that there is the optimum temperature increasing carbonation depth and the optimum temperature is close to $30^{\circ}C$.

Physical, Morphological, and Chemical Analysis of Fly Ash Generated from the Coal Fired Power Plant (석탄 화력발전소에서 발생되는 석탄회 특성과 형성 분석에 관한 연구)

  • 이정언;이재근
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.146-156
    • /
    • 1998
  • Fly ash produced in coal combustion is a fine-grained material consisting mostly of spherical, glassy, and porous particles. A physical, morphological, and chemical characteristic of fly ash has been analyzed. This study may contribute to the data base of domestic fly ash, the improvement of combustion efficiency, ash recycling and ash collection in the electrostatic precipitator. The physical property of fly ash is determined using a particle counter for the measurement of ash size distribution and gravimeter. Morphological characteristic of fly ash is performed using a scanning electron micrograph and an optical microscope. The chemical components of fly ash are determined using an inductively coupled plasma emission spectrometry (ICP). The distribution of fly ash size was ranged from 15 to 25 $\mu$m in mass median diameter. Exposure conditions of flue gas temperature and duration within the combustion zone of the boiler played an important role on the morphological properties of the fly ash such as shape, relative opacity, coloration, cenosphere and plerosphere. The spherical fly ash might be generated at the condition of complete combustion. The size of fly ash was found to be increased the with particle-particle interaction of agglomeration and coagulation. Fly ash consisted of $SiO_2\;Al_2O_3\;and\;Fe_2O_3$ with 85% and carbon with 3~10% of total mass.

  • PDF

Combustion Characteristics of Imported Bituminous & Subbituminous Coal in a Pilot Scale Test Facility (발전용 역청탄 및 아역청탄의 파일롯 연소특성 평가)

  • Kim, Hyunhee;Park, Hoyoung;Lim, Hyunsoo;Baek, Sehyun;Kim, Taehyung;Kim, Youngju;Gong, Jiseon;Lee, Jeongeun
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.207-214
    • /
    • 2014
  • With the depletion of high grade coal, it is indispensable to be used co-combustion of low rank coal with bituminous coal in pulverized coal-fired power plants. This study describes the detailed measurements of combustion characteristics of bituminous and subbituminous coal in a 0.7MWth pilot-scale test facility. This experimental works include the measurement of gas temperature, gas concentrations along with the reactor axial and radial distance at the condition of excess air ratio of 1.2. The solid sampling was carried out and analyzed with the combustion of bituminous coal. The main reaction zone of coal flame in a reactor was formed about 1 m from the swirl burner, and at downstream, the fully developed temperature and species distribution was observed. The sampled particles of bituminous coal in a reactor revealed the complete carbon burn-out was achieved just after an main combustion zone.

Determination of Combustion Propagation Velocity of Thermite Reaction Mixture Using Continuous VOD Measurement System (연속적 폭굉속도 측정 시스템을 이용한 테르밋 반응 혼합물의 연소전파속도 측정에 관한 연구)

  • Kim, Min-Seong;Kang, Hyeong-Min;Jeong, Sang-Sun;Jeong, Yun-Yeong;Park, Hoon;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.33 no.3
    • /
    • pp.21-28
    • /
    • 2015
  • The objective of this study is to develop a method for monitoring continuously the combustion propagation behavior of commercial thermite reaction mixtures using conventional continuous VOD (velocity of detonation) system. In order to monitor the combustion front propagation with elapsed time during thermite reaction, the VOD system employs two types of commercial VOD probes and one self-made probe: VOD PROBEROD-OS, VOD PROBEROD-HS and VOD PROBEROD-ES, respectively. Among the probes, the only self made VOD PROBEROD-ES successfully demonstrates the velocity of combustion propagation (VOC) with elapsed time. It was found that VOC of the thermite reaction mixture inside a steel tube has been reached around 200m/s within 100mm distance from the ignition and dramatically increased up to about twice the speed of sound in the range between 100mm and 300mm distance. Finally the VOC reached up to around 800m/s. This results imply that it is necessary to use over 300mm long cartridge of thermite reaction mixture in order to achieve normal VOC of the mixture.

Evaluation of the Usability of Micro-Sensors for the Portable Fine Particle Measurement (생활 속 미세먼지 영향평가를 위한 소형센서의 신뢰성 및 활용성 평가)

  • Kim, Jinsu;Jang, Youjung;Kim, Jinseok;Park, Minwoo;Bu, Chanjong;Lee, Yungu;Kim, Younha;Woo, Jung-Hun
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.4
    • /
    • pp.378-393
    • /
    • 2018
  • As atmospheric fine dust problems in Korea become more serious, there are growing needs to find the concentration of fine particles in indoor and outdoor areas and there are increasing demands for sensor-based portable monitoring devices capable of measuring fine dust concentrations instantly. The low-cost portable monitoring devices have been widely manufactured and used without the prescribed certification standards which would cause unnecessary confusion to the concerned public. To evaluate the reliability those devices and to improve their usability, following studies were conducted in this work; 1) The comparisons between sensor-based devices and comparison with more accurate devices were performed. 2) Several experiments were conducted to understand usefulness of the portable monitoring devices. As results, the absolute concentration levels need to be adjusted due to insensitivity of the tiny light scattering sensors in the portable devices, but their linearity and reproducibility seem to be acceptable. By using those monitoring devices, users are expected to have benefits of recognizing the changes of concentration more quickly and could help preventing themselves from the adverse health impacts.

Measurement of Tensile Properties for Thin Aluminium Film by Using White Light Interferometer (백색광간섭계를 이용한 알루미늄 박막의 인장 물성 측정)

  • Kim, Sang-Kyo;Oh, Chung-Seog;Lee, Hak-Joo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.471-478
    • /
    • 2010
  • Thin films play an important role in many technological applications including microelectronic devices, magnetic storage media, MEMS and surface coatings. It is well known that a thin film's material properties can be very different from the corresponding bulk properties and thus there has been a strong need for the development of a reliable test method to measure the mechanical properties of a thin film. We have developed an alternative and convenient test method to overcome the limitations of previous membrane deflection experiment and uniaxial tensile test by adopting a white light interferometer having sub-nanometer out-of-plane displacement resolution. The freestanding aluminium specimens are tested to verity the effectiveness of the test method developed and get the tensile properties. The specimens are 0.5 rum wide, $1{\mu}m$ thick and fabricated through MEMS processes including sputtering. 1 to 5 specimens are fabricated on Si dies. The membrane deflection experiments are carried out by using a homemade tester consisted of a motor-driven loading tip, a load cell, and 6 DOF alignment stages. The test system is compact enough to set it up beneath a commercial white light interferometric microscope. The white light fringes are utilized to align a specimen with the tester. The Young's modulus and yield point stress of the aluminium film are 62 GPa and 247 MPa, respectively.

Evaluation of Ultrasonic Nonlinear Characteristics in Heat-Treated Aluminum Alloy (열처리된 알루미늄 합금의 초음파 비선형 특성 평가)

  • Kim, JongBeom;Cheon, Chung;Jhang, Kyung-Young;Kim, Chung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.2
    • /
    • pp.193-197
    • /
    • 2013
  • In this study, ultrasonic nonlinear characteristics in the heat-treated aluminum alloy have been evaluated. The nonlinearity of ultrasonic wave has been measured as the acoustic nonlinear parameter ${\beta}$, depending upon the amplitude ratio of the second-order harmonic and the fundamental frequency component of ultrasonic wave propagating through the materials. The parameter ${\beta}$ measurement has been carried out with the reflected signals from the back-wall of specimens at the same plane using the contact-type transducers. The heat-treatment, aging, has been achieved at $300^{\circ}C$ for various durations in the range of 1 to 50 hours. The tensile strength and elongation are obtained by the tensile test and then compared with the parameter ${\beta}$. There is a peak of the acoustic nonlinear parameter ${\beta}$ on 5 hours aging and the ${\beta}$ decreases thereafter, exhibiting closed relations with tensile strength and elongation. Also, the heat-treatment time showing peak in the parameter ${\beta}$ was identical to that showing severe change in the ${\sigma}-{\varepsilon}$ curve. These results suggest that the acoustic nonlinear parameter ${\beta}$ can be used for monitoring the strength variations with aging of aluminum alloys.

Hip Range of Motion Estimation using CT-derived 3D Models (CT기반 3차원 모델을 이용한 고관절 운동범위 예측)

  • Lee, Yeon Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.1
    • /
    • pp.115-122
    • /
    • 2018
  • The success of the total hip arthroplasty is revealed as initial stability, range of motion, and long term pain, etc. Depending upon choice of implantation options such as femoral neck offset, diameter of the femoral head, the lateral opening tilt. Especially the impingement between femoral head component and acetabular cup limits the range of motion of the hip. In this sense, estimation or evaluation of the range of motion before and after the total hip arthroplasty is important. This study provides the details of a computer simulation technique for the hip range of motion of intact hip as well as arthroplasty. The suggested method defines the hip rotation center and rotation axes for flexion and abduction, respectively. The simulation uses CT-based reconstructed 3D models and an STL treating software. The abduction angle of the hip is defined as the superolateral rotation angle from sagittal plane. The flexion angle of the hip is defined as the superoanterior angle from the coronal plane. The maximum abduction angle is found as the maximum rotation angle by which the femoral head can rotate superolaterally about the anterior-posterior axis without impingement. The maximum flexion angle is found as the maximum rotation angle by which the femoral head can rotate superoanteriorly about the medial-lateral axis without impingement. Compared to the normal hip, the total hip replacement hip showed decreased abduction by 60 degrees and decreased flexion by 4 degrees. This measured value implies that the proposed measurement technique can make surgeons find a modification of increase in the femoral neck offset or femoral head, to secure larger range of motion.

Change of Clinical Effect upon Use of Glutamine to Critically Ill Patients over Age 60 Receiving TPN (정맥영양 투여 받는 60세 이상 중환자에서 glutamine 사용에 따른 임상 효과의 변화)

  • Lee, Hye Seung;Kim, Sungtae;Min, Young Sil;Sohn, Uy Dong
    • Korean Journal of Clinical Pharmacy
    • /
    • v.24 no.1
    • /
    • pp.9-14
    • /
    • 2014
  • Background: It is known to reduce the mortality when glutamine is supplied to patients during the surgery or in intensive care unit through intravenous nutrition supply. The purpose of this study is to establish the appropriate basis for use of glutamine and guidelines of nutrition supply for critically ill patients in the hospital by examining the clinical effects of administration of glutamine with subjects of elderly critically ill patients receiving intravenous nutrition in one hospital in Korea. Method: Among elderly patients with age of 60 or more hospitalized in Yeuido St. Mary's Hospital from August 2012 to July 2013, those who stayed in the intensive care unit for more than a week and received TPN (Total Parenteral Nutrition) for more than 3 days during staying in the intensive care unit were classified to a test group using glutamine and a control group without glutamine. Duration of use of mechanical ventilator, duration of hospitalization, occurrence of infectious disease and death were compared between two groups. We would like to identify the clinical test figures affected by the use of glutamine by examining changes in SCr, Total Protein, Albumin, AST, ALT, TB, DB and GFR at the time of admission and discharge. Results: At the time of admission to intensive care unit, gender, physical measurement information and clinical test figures did not show any significant difference between 72 subjects in a test group and 24 subjects in a control group. Thus, two groups began in the same condition. There were no significant difference in duration of hospitalization, duration of intensive care unit, use of mechanical ventilator, occurrence of infectious disease and death. As the results of statistical analysis of the average changes of clinical test figures at the time of admission and discharge of intensive care unit, SCr and GFR were significantly changed in the test group. GFR was significantly changed in a control group. As the result of analysis of the clinical test figures at the time of discharge with reflection of average changes after clinical test figures were corrected at the time of admission of intensive care unit, TB and GFR were significantly increased in a test group compared with those in a control group. Other clinical test figures were not significantly changed. Conclusion: If glutamine is administered to critically ill patients over age 60 receiving TPN and careful monitoring for total bilirubin is made in the future, it is expected to give the positive effect on renal function andminimize the side effect of arise in total bilirubin.

Characterization of a Micro Power Generator using a Fabricated Electroplated Coil (전기도금 방법으로 제작한 코일을 이용한 초소형 발전기의 특성분석)

  • Lee, Dong-Ho;Kim, Seong-Il;Kim, Young-Hwan;Kim, Yong-Tae;Park, Min-Chul;Lee, Chang-Woo;Baek, Chang-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.3 s.40
    • /
    • pp.9-12
    • /
    • 2006
  • We have designed and fabricated micro power generators by electroplating which is important in MEMS(micro electro mechanical system) technique. We have electroplated MEMS coils on the glass substrates and have chosen one of these coils for experiments. The thickness, width, and length of the coil are $7{\mu}m,\;20{\mu}m$, and 1.6 m, respectively. We have analyzed the structure of MEMS coil by SEM. We have made a vibrating system for reproducible results in measurement. With reciprocating a magnet on the surface of a fabricated winding coil, the micro power generator produce an alternating voltage. We have changed the vibrational frequency from 0.5 Hz to 8 Hz. The generated voltage was 106 mV at 3 Hz and 198 mV at 6 Hz. We aim at the micro power generator which can change vibration energy to useful electric energy.

  • PDF