• Title/Summary/Keyword: engineering geology

Search Result 2,246, Processing Time 0.02 seconds

Urban geology of Tabriz City: Environmental and geological constraints

  • Azarafza, Mohammad;Ghazifard, Akbar
    • Advances in environmental research
    • /
    • v.5 no.2
    • /
    • pp.95-108
    • /
    • 2016
  • Urban geology is the study of urban geologic environments to provide a scientific basis for rational land use planning and urban development and provides information on geologic environments as a basis for city planners. Based on AEG recommendations, urban geological studies covered the urbanism and historical backgrounds, geological setting, engineering geological constraints and environmental assessments of understudied cities. The aim of this study is to provide a good view of urban geology of Tabriz city the capital of East Azerbaijan province in Iran. The topics of discussions about Tabriz city urban geology are included geologic (geomorphology, geology, climatology and hydrogeology), engineering geological (earthquake, landslide and geotechnical hazards investigations) and environmental characteristics (air, soil and water hazards assessment).The results of the urban geologic studies indicated that Tabriz city in terms of engineering geological and environmental constraints is at high risk potential and in terms of seismic activity and landslide instability is highly potential. In terms of air, soil and water pollution there are many important environmental concern in this city.

Forecasting tunnel path geology using Gaussian process regression

  • Mahmoodzadeh, Arsalan;Mohammadi, Mokhtar;Abdulhamid, Sazan Nariman;Ali, Hunar Farid Hama;Ibrahim, Hawkar Hashim;Rashidi, Shima
    • Geomechanics and Engineering
    • /
    • v.28 no.4
    • /
    • pp.359-374
    • /
    • 2022
  • Geology conditions are crucial in decision-making during the planning and design phase of a tunnel project. Estimation of the geology conditions of road tunnels is subject to significant uncertainties. In this work, the effectiveness of a novel regression method in estimating geological or geotechnical parameters of road tunnel projects was explored. This method, called Gaussian process regression (GPR), formulates the learning of the regressor within a Bayesian framework. The GPR model was trained with data of old tunnel projects. To verify its feasibility, the GPR technique was applied to a road tunnel to predict the state of three geological/geomechanical parameters of Rock Mass Rating (RMR), Rock Structure Rating (RSR) and Q-value. Finally, in order to validate the GPR approach, the forecasted results were compared to the field-observed results. From this comparison, it was concluded that, the GPR is presented very good predictions. The R-squared values between the predicted results of the GPR vs. field-observed results for the RMR, RSR and Q-value were obtained equal to 0.8581, 0.8148 and 0.8788, respectively.