• Title/Summary/Keyword: engineering economy

Search Result 1,628, Processing Time 0.022 seconds

Effect of Engine Friction on Vehicle Fuel Economy during Warm-up (웜업시 엔진 마찰이 차량 모드 연비에 미치는 영향)

  • Lim, Gun-Byoung;Wi, Hyo-Seong;Park, Jin-Il;Lee, Jong-Hwa;Park, Kyoung-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.109-114
    • /
    • 2008
  • An improvement of vehicle fuel economy is one of the most important topic in automotive engineering. Lots of engineers make efforts to achieve 1% of fuel economy improvement. Engine friction is an important factor influencing vehicle fuel economy. This paper focuses on effect of engine friction on vehicle fuel economy during warm-up. A computer simulation is one of the powerful tools in automotive engineering field. Recently Simulation is attempting to virtual experiment not using expensive instruments. It is possible to presuppose fuel economy by changing the characteristic of accessories using CRUISE(vehicle simulation software). In this paper, fuel consumption at each part of the vehicle is analyzed by both of experiment and simulation. The results of fuel economy analysis on experiment substitute for Cruise to calculate fuel economy. The simulation data such as engine speed, brake torque, shift pattern, vehicle speed, fuel consumption level is well correlated to experiment data. In this paper, the change of warm-up time, faster or slower, through simulation is performed. As a result of the fast warm-up, fuel economy is improved up to 1.7%.

Effect of Lock-up Control Strategy on Vehicle Fuel Economy (자동변속기 차량의 직결영역 변화에 따른 연비 특성에 관한 연구)

  • Kim, Woo-Seok;Han, Chang-Ho;Kim, Nam-Kyun;Park, Kyung-Seok;Park, Jin-Il;Lee, Jong-Hwa
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.9-15
    • /
    • 2006
  • Experiments are conducted to compare fuel economy of FTP-75 mode on two different lock-up conditions; (A) Lock-up on at engine speed of 1,200(rpm) and above for 3rd & 4th gear, (B) Lock-up on at engine speed of 1400rpm and above for 4th gear only. As a result, case A had better fuel economy about 2.75(%) than case B for FTP-75 mode. Simulation(CRUISE, AVL) study is also carried out in order to estimate the effect of Lock-up control strategy for vehicle fuel economy. The fuel economy simulation result agrees with the measured fuel economy within error of 2(%). The improved Lock-up control strategy is proposed by simulation.

Improvement of Fuel Economy of a City Bus using Shift Indicator (변속 지시기를 이용한 시내버스 연비 개선)

  • Yum, Siho;Kim, Kibok;Park, Jinil;Lee, Jonghwa;Park, Kyoungseok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.34-39
    • /
    • 2013
  • The gear shifting timing of a manual transmission vehicle is influencing fuel economy. This paper focuses on an gear shifting indicator of an city bus with manual transmission, which can improve fuel economy. The shift indicator is supposed to collect the vehicle data during driving, calculate and compare fuel economy with and without gear shifting, and indicate the proper gear shifting timing. The H/W and S/W of the shift indicator are developed and tested on city bus in this research. The experiments are carried out on real road by 3 different drivers and the results show the improvement of fuel economy from 6.0% to 21.4%. The average engine torque and speed are reduced due to early gear shifting and the usage of highest gear is increased. The results of chassis test are also performed and show 7.5% improvement of fuel economy.

Study on Fuel Economy Characteristics by Cumulative Distance of Vehicle (차량 누적거리에 의한 연비 특성 연구)

  • Lim, Jae-Hyuk;Kim, Ki-Ho;Lee, Min-Ho
    • Journal of Power System Engineering
    • /
    • v.21 no.4
    • /
    • pp.57-61
    • /
    • 2017
  • The vehicle label fuel economy is used as an energy management indicator nationwide. It induces technology development of automobile manufacturers and plays a role of providing information when purchasing a consumer vehicle. However, consumers who purchase a new vehicle continued to complain that the label fuel economy is different from the mandatory fuel economy rate. The domestic fuel economy measurement method is the same as the North American measurement method. The results of the two test modes (urban (FTP-75 mode), highway (HWFET mode)) are calculated in five test modes reflecting various environmental conditions and driving patterns 5-cycle correction formula is used which is equivalent to the fuel efficiency value. In this study, to solve the consumers' curiosity about the fuel economy of new vehicle, we use domestic fuel economy measurement method to measure the new car condition within 150 km of driving distance and the cumulative driving distance condition of domestic label fuel economy test vehicle. A comparative evaluation of fuel economy was carried out for a durability vehicle of $6,500{\pm}1,000km$. A result, mean value of the fuel economy of the four gasoline vehicles increased by 2.7 % in the city center mode and by 2.5 % in the highway mode in the durable vehicle compared new vehicle. And in the case of the diesel vehicle it increased by 2.5 % and 3.9 % respectively. The harmful exhaust gas emitted from the vehicle also resulted in more emissions of both gasoline and diesel vehicles in new vehicles. It is considered that the increase of the frictional force of the vehicle driving system and the lubricating oil system would have an effect on the reduction of the fuel economy of the new vehicle, and it was found that the fuel economy and the exhaust gas were improved by proper cumulative distance (domesticate) to the new vehicle.

ANALYZING THE EFFECT OF THE RESIDENCE AND REAL ESTATE POLICIES ON HOUSING PRICE

  • Jin-Ho Noh;Jae-jun Kim;Sun-Sik Kim;Eun-Jin Ahn;Hye-In Lee;Yoon-Sun Lee
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.490-497
    • /
    • 2007
  • Since the foreign currency crisis, Korean economy has suffered recession and the government launches residence and real estate policy in order to increase the demand and trade of real estate and to help the economy revitalization. 1 As a result, the rate of economy growth is shown the high increase with the figure of 10.9% in 1999 and 8.8% in 2000. However, it brings overheating market as a negative effect. Although, the government established the policy for the control of speculation, the policy causes instability of economy. This study is to analyze the effect between the residence policy and the housing cost since the foreign currency crisis through housing sale price estimation and housing lease price estimation and is to apply the basis data of the next residence policy.

  • PDF

CONTROL STRATEGY OF ELECTRIC COOLANT PUMPS FOR FUEL ECONOMY IMPROVEMENT

  • CHO H.;JUNG D.;ASSANIS D. N.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.269-275
    • /
    • 2005
  • The engine cooling system for a medium duty V6, 4.5 L diesel engine was modeled with a commercial code, GT-Cool in order to investigate the effect of controllable electric pump on the cooling performance and the fuel economy. The simulation results of the cooling system model with mechanical coolant pump were validated with experimental data. Two different types of electric pumps were implemented into the cooling system model and PID control for electric pump operation was incorporated into the simulation study. Based on the simulation result with electric pump, conventional thermostat hysteresis was modified to reduce pump operation for additional improvement of fuel economy, and then the benefit of electric pumps with modified thermostat hysteresis on fuel economy was demonstrated with the simulation. The predicted result indicates that the cooling system with electric pump and modified thermostat hysteresis can reduce pump power consumption by more than $99\%$ during the FTP 74 driving cycle.

Evaluation of Fuel Economy for a Parallel Hybrid Electric Vehicle

  • Park, Dookhwan;Kim, Hyunsoo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1287-1295
    • /
    • 2002
  • In this work, the fuel economy of a parallel hybrid electric vehicle is investigated. A vehicle control algorithm which yields operating points where operational cost of HEV is minimal is suggested. The operational cost of HEV is decided considering both the cost of fossil fuel consumed by an engine and the cost of electricity consumed by an electric motor. A procedure for obtaining the operating points of minimal fuel consumption is introduced. Simulations are carried out for 3 variations of HEV and the results are compared to the fuel economy of a conventional vehicle in order to investigate the effect of hybridization. Simulation results show that HEV with the vehicle control algorithm suggested in this work has a fuel economy 45% better than the conventional vehicle if braking energy is recuperated fully by regeneration and idling of the engine is eliminated. The vehicle modification is also investigated to obtain the target fuel economy set in PNGV program.

Analysis of Charge and Discharge Characteristics of Heavy Duty Electric Commercial Vehicle Batteries (중대형 전기 상용차 배터리의 주행중 충방전 특성 분석)

  • Song, Jingeun;Cha, Junepyo
    • Journal of Institute of Convergence Technology
    • /
    • v.11 no.1
    • /
    • pp.19-23
    • /
    • 2021
  • These days, sales of battery electric vehicles have been rapidly increasing due to the strict CO2 regulations. However, since it take too long to measure the energy economy of electric vehicles, it has been required to improve the procedure of energy economy measurement. In order to improve this problem, the present study analyzed the battery charge/discharge pattern according to the changes in battery SOC (state of charge). In general, the energy economy test is started with a battery SOC charged to 100 %. However, it was identified that when the battery is fully charged, it can actually be charged over the 100 % (e.g., 100.5 %). This can induce errors in the energy economy measurement. Therefore, the present study recommend to start the test at SOC 99.9 %. The regenerative braking was partly restricted for the SOC over 90 %. This made it difficult to estimate the overall energy economy of the electric vehicle. However, it was identified that there was no change in the battery charge/discharge characteristics under the SOC 90 %. Therefore, the energy economy test can be shortened by predicting the overall energy economy through a short mileage test.

Analysis of Fuel Economy for Series Plug-in Hybrid Electric Bus according to Engine Operation Strategy Based on Simulation (직렬형 플러그인 하이브리드 전기 버스의 엔진 구동 전략에 따른 시뮬레이션 기반 연비 분석)

  • Kim, Jinseong;Lee, Chibum;Park, Yeong-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.102-107
    • /
    • 2014
  • Because of high oil prices and emission gas problems, many governments tighten regulation of fuel economy and emission gas. For Passenger car, there are many researches for plug-in hybrid electric vehicles and they are being manufactured. On the other hand, there are few researches for plug-in hybrid electric bus that is heavy commercial vehicle. In this study, analysis of fuel economy for series plug-in hybrid electric bus according to engine operation strategy based on simulation is conducted. Forward simulator is developed using Autonomie. Engine operation strategies consist on constant engine operation strategy and engine on/off operation strategy. Considering the engine operation strategy, results of vehicle speed, engine operating points and fuel economy are obtained and analyzed. As a result, engine on/off operation strategy has more advantage than constant engine operation strategy in terms of fuel economy.

EXPERIMENTAL ANALYSIS OF DRIVING PATTERNS AND FUEL ECONOMY FOR PASSENGER CARS IN SEOUL

  • Sa, J.-S.;Chung, N.-H.;Sunwoo, M.-H.
    • International Journal of Automotive Technology
    • /
    • v.4 no.2
    • /
    • pp.101-108
    • /
    • 2003
  • There are a lot of factors that influence automotive fuel economy such as average trip time per kilometer, average trip speed, the number of times of vehicle stationary, and so forth. These factors depend on road conditions and traffic environment. In this study, various driving data were measured and recorded during road tests in Seoul. The accumulated road test mileage is around 1,300 kilometers. The objective of the study is to identify the driving patterns of the Seoul metropolitan area and to analyze the fuel economy based on these driving patterns. The driving data which was acquired through road tests was analysed statistically in order to obtain the driving characteristics via modal analysis, speed analysis, and speed-acceleration analysis. Moreover, the driving data was analyzed by multivariate statistical techniques including correlation analysis, principal component analysis, and multiple linear regression analysis in order to obtain the relationships between influencing factors on fuel economy. The analyzed results show that the average speed is around 29.2 km/h, and the average fuel economy is 10.23 km/L. The vehicle speed of the Seoul metropolitan area is slower, and the stop-and-go operation is more frequent than FTP-75 test mode which is used for emission and fuel economy tests. The average trip time per kilometer is one of the most important factors in fuel consumption, and the increase of the average speed is desirable for reducing emissions and fuel consumption.