• 제목/요약/키워드: engineered surface

검색결과 130건 처리시간 0.031초

비정질 산화물 반도체의 열전특성 (Transparent Amorphous Oxide Semiconductor as Excellent Thermoelectric Materials)

  • 김서한;박철홍;송풍근
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.52-52
    • /
    • 2018
  • Only approximately 30% of fossil fuel energy is used; therefore, it is desirable to utilize the huge amounts of waste energy. Thermoelectric (TE) materials that convert heat into electrical power are a promising energy technology. The TE materials can be formed either as thin films or as bulk semiconductors. Generally, thin-film TE materials have low energy conversion rates due to their thinness compared to that in bulk. However, an advantage of a thin-film TE material is that the efficiency can be smartly engineered by controlling the nanostructure and composition. Especially nanostructured TE thin films are useful for mitigating heating problems in highly integrated microelectronic devices by accurately controlling the temperature. Hence, there is a rising interest in thin-film TE devices. These devices have been extensively investigated. It is demonstrated that transparent amorphous oxide semiconductors (TAOS) can be excellent thermoelectric (TE) materials, since their thermal conductivity (${\kappa}$) through a randomly disordered structure is quite low, while their electrical conductivity and carrier mobility (${\mu}$) are high, compared to crystalline semiconductors through the first-principles calculations and the various measurements for the amorphous In-Zn-O (a-IZO) thin film. The calculated phonon dispersion in a-IZO shows non-linear phonon instability, which can prevent the transport of phonon. The a-IZO was measured to have poor ${\kappa}$ and high electrical conductivity compared to crystalline $In_2O_3:Sn$ (c-ITO). These properties show that the TAOS can be an excellent thin-film transparent TE material. It is suggested that the TAOS can be employed to mitigate the heating problem in the transparent display devices.

  • PDF

CRITICAL HEAT FLUX ENHANCEMENT IN FLOW BOILING OF Al2O3 AND SiC NANOFLUIDS UNDER LOW PRESSURE AND LOW FLOW CONDITIONS

  • Lee, Seung-Won;Park, Seong-Dae;Kang, Sa-Rah;Kim, Seong-Man;Seo, Han;Lee, Dong-Won;Bang, In-Cheol
    • Nuclear Engineering and Technology
    • /
    • 제44권4호
    • /
    • pp.429-436
    • /
    • 2012
  • Critical heat flux (CHF) is the thermal limit of a phenomenon in which a phase change occurs during heating (such as bubbles forming on a metal surface used to heat water), which suddenly decreases the heat transfer efficiency, thus causing localized overheating of the heating surface. The enhancement of CHF can increase the safety margins and allow operation at higher heat fluxes; thus, it can increase the economy. A very interesting characteristic of nanofluids is their ability to significantly enhance the CHF. Nanofluids are nanotechnology-based colloidal dispersions engineered through the stable suspension of nanoparticles. All experiments were performed in round tubes with an inner diameter of 0.01041 m and a length of 0.5 m under low pressure and low flow (LPLF) conditions at a fixed inlet temperature using water, 0.01 vol.% $Al_2O_3$/water nanofluid, and SiC/water nanofluid. It was found that the CHF of the nanofluids was enhanced and the CHF of the SiC/water nanofluid was more enhanced than that of the $Al_2O_3$/water nanofluid.

Mucosal Immunization with Recombinant Adenovirus Encoding Soluble Globular Head of Hemagglutinin Protects Mice Against Lethal Influenza Virus Infection

  • Kim, Joo Young;Choi, Youngjoo;Nguyen, Huan H.;Song, Man Ki;Chang, Jun
    • IMMUNE NETWORK
    • /
    • 제13권6호
    • /
    • pp.275-282
    • /
    • 2013
  • Influenza virus is one of the major sources of respiratory tract infection. Due to antigenic drift in surface glycoproteins the virus causes annual epidemics with severe morbidity and mortality. Although hemagglutinin (HA) is one of the highly variable surface glycoproteins of the influenza virus, it remains the most attractive target for vaccine development against seasonal influenza infection because antibodies generated against HA provide virus neutralization and subsequent protection against the virus infection. Combination of recombinant adenovirus (rAd) vector-based vaccine and mucosal administration is a promising regimen for safe and effective vaccination against influenza. In this study, we constructed rAd encoding the globular head region of HA from A/Puerto Rico/8/34 virus as vaccine candidate. The rAd vaccine was engineered to express high level of the protein in secreted form. Intranasal or sublingual immunization of mice with the rAd-based vaccine candidates induced significant levels of sustained HA-specific mucosal IgA and IgG. When challenged with lethal dose of homologous virus, the vaccinated mice were completely protected from the infection. The results demonstrate that intranasal or sublingual vaccination with HA-encoding rAd elicits protective immunity against infection with homologous influenza virus. This finding underlines the potential of our recombinant adenovirus-based influenza vaccine candidate for both efficacy and rapid production.

Crack initiation mechanism and meso-crack evolution of pre-fabricated cracked sandstone specimens under uniaxial loading

  • Bing Sun;Haowei Yang;Sheng Zeng;Yu Yin;Junwei Fan
    • Geomechanics and Engineering
    • /
    • 재33권6호
    • /
    • pp.597-609
    • /
    • 2023
  • The instability and failure of engineered rock masses are influenced by crack initiation and propagation. Uniaxial compression and acoustic emission (AE) experiments were conducted on cracked sandstone. The effect of the crack's dip on the crack initiation was investigated using fracture mechanics. The crack propagation was investigated based on stress-strain curves, AE multi-parameter characteristics, and failure modes. The results show that the crack initiation occurs at the tip of the pre-fabricated crack, and the crack initiation angle increases from 0° to 70° as the dip angle increases from 0° to 90°. The fracture strength kcr is derived varies in a U-shaped pattern as β increased, and the superior crack angle βm is between 36.2 and 36.6 and is influenced by the properties of the rock and the crack surface. Low-strength, large-scale tensile cracks form during the crack initiation in the cracked sandstone, corresponding to the start of the AE energy, the first decrease in the b-value, and a low r-value. When macroscopic surface cracks form in the cracked sandstone, high-strength, large-scale shear cracks form, resulting in a rapid increase in the AE energy, a second decrease in the b-value and an abrupt increase in the r-value. This research has significant theoretical implications for rock failure mechanisms and establishment of damage indicators in underground engineering.

화재 온도를 받는 고인성.고내화성 시멘트 복합체의 거동 (Behavior of Fire Resistance Engineered Cementitious Composites(FR-ECC) under Fire Temperature)

  • 한병찬;권영진;김재환
    • 콘크리트학회논문집
    • /
    • 제19권2호
    • /
    • pp.189-197
    • /
    • 2007
  • 터널 라이닝은 대형 화재 등과 같은 고온에 노출될 경우, 폭렬이 발생하고 이로 인해 급격한 온도 전달 및 내력 저하로 구조체 붕괴의 원인이 될 수 있다는 것이 여러 사례를 통해 보고되고 있다. 본 연구는 터널라이닝의 내화뿜칠 재료로 매우 적합할 것으로 판단되는 고인성 고내화성 시멘트 복합체(FR-ECC)를 개발하고 이의 역학적 특성 및 내화 성능을 평가하고자 하였다. 이를 위하여 FR-ECC에 있어서의 배합 요인을 실험 변수로 내화 시험을 실시하였으며 비정상 온도 분포 해석 기법(nonlinear transient heat flow analysis)을 이용하여 이를 해석적으로 묘사 검증되었다. 또한, 실험 결과를 통해 검증된 해석 기법을 이용하여 터널라이닝에 대한 열전달 해석을 수행하여 FR-ECC를 내화 2차 라이닝재로 이용하는 경우의 거동 특성을 분석하였다. 실험 결과 내화 성능을 향상시키기 위한 FR-ECC의 최적 배합은 PVA 섬유 또는 PP 섬유 혼입률 $V_f=2.0%$, 다공성 세라믹재 혼입률 $V_C=3.6%$, 공기량 $V_A=15%$로 나타났으며, 검증된 비정상 온도 분포 해석 기법을 이용하여 기존 터널에 40mm FR-ECC를 추가 라이닝 한 경우에 대한 해석 결과, 콘크리트 및 철근의 온도 분포가 모두 $350^{\circ}C$ 이내에서 제어되어 터널 내 콘크리트 및 철근에 대한 화재 피해를 방지할 수 있을 것으로 판단되었다.

자기 골수세포와 고분자 폴리머를 이용한 인공 혈관의 개발 (Development of Artificial Vessels with Autologous Bone Marrow Cells and Polymers)

  • 최진욱;임상현;홍유선;김병수
    • Journal of Chest Surgery
    • /
    • 제41권2호
    • /
    • pp.160-169
    • /
    • 2008
  • 배경: 혈관질환의 수술에 사용되는 인공 도관의 막힘과 문합부위의 좁아짐 등을 개선하기 위한 방법으로 조직공학적인 방법과 자가 세포를 이용한 인공혈관의 제작이 대안으로 대두되고 있다. 저자들은, 생흡수성이 있는 고분자 폴리머 지지체와 자가 골수세포를 이용한 인공혈관으로 생체실험을 시행하였다. 대상 및 방법: 생분해성 고분자 재료인 poly (lactide-co-${\varepsilon}$-caprolactone) (PLCL)과 poly(glycolic acid) (PGA) fiber로 혈관용 지지체를 제작한 후, 피실험 동물의 골수를 채취하여 혈관 내피 세포와 평활근 세포로 분열시켜 배양한 후 혈관 지지체위에 이식하였다. 만들어진 인공 혈관을 잡견의 복부대동맥에 이식한 후 3주 후에 혈관 조영술을 시행하고, 안락사 후에 혈관을 제거하여 조직학적 검사를 시행하였다. 결과: 6마리의 잡견 중 2마리에서 수술 후 10일에 혈관 지지체의 균열에 의한 대량 출혈로 사망하였다. 나머지 4마리의 잡견은 수술 후 3주까지 생존하였으며, 혈관 조영술상 혈관의 막힘이나 좁아짐은 발견되지 않았다. 인공 혈관의 내면은 작은 혈전들이 붙어 있었으며, 조직학 검사에서 정상 혈관과 유사한 3층의 구조를 나타내었다. 또한 면역화학 검사에서 혈관 내피세포와 혈관 평활근 세포가 재생된 것을 확인하였다. 결론: 고분자 폴리머와 자가 골수세포를 이용한 인공혈관은 생체 내에서 정상혈관과 유사한 모양으로 재생이 가능함을 보여주었다. 그러나, 동맥압력에 견디기 위해 혈관 지지체의 물성에 대한 개량과 충분한 양의 혈관 세포를 얻기 위한 연구가 더 필요할 것으로 생각된다.

Preparation and Characterization of Small Intestine Submucosa Powder Impregnated Poly(L-lactide) Scaffolds: The Application for Tissue Engineered Bone and Cartilage

  • Khang, Gilson;Rhee, John M.;Shin, Philkyung;Kim, In Young;Lee, Bong;Lee, Sang Jin;Lee, Young Moo;Lee, Hai Bang;Lee, Ilwoo
    • Macromolecular Research
    • /
    • 제10권3호
    • /
    • pp.158-167
    • /
    • 2002
  • In order to endow with new bioactive functionality from small intestine submucosa (SIS) powder as natural source to poly (L-lactide) (PLA) and poly (lactide-co-glycolide) (PLGA) synthetic biodegradable polymer, porous SIS/PLA and SIS/PLGA as natural/synthetic composite scaffolds were prepared by means of the solvent casting/salt leaching methods for the possibility of the application of tissue engineered bone and cartilage. A uniform distribution of good interconnected pores from the surface to core region was observed the pore size of 40~500 ${\mu}{\textrm}{m}$ independent with SIS amount using the solvent casting/salt leaching method. Porosities, specific pore areas as well as pore size distribution also were almost same. After the fabrication of SIS/PLA hybrid scaffolds, the wetting properties was greatly enhanced resulting in more uniform cell seeding and distribution. Five groups as PGA non-woven mesh without glutaraldehyde (GA) treatment, PLA scaffold without or with GA treatment, and SIS/PLA (Code No.3 ; 1 : 12 of salt content, (0.4 : 1 of SIS content, and 144 ${\mu}{\textrm}{m}$ of median pore size) without or with GA treatment were implanted into the back of nude mouse to observe the effect of SIS on the induction of cells proliferation by hematoxylin and eosin, and von Kossa staining for 8 weeks. It was observed that the effect of SIS/PLA scaffolds with GA treatment on bone induction are stronger than PLA scaffolds, that is to say, in the order of PLA/SIS scaffolds with GA treatment > PLA/SIS scaffolds without GA treatment > PGA nonwoven > PLA scaffolds only with GA treatment = PLA scaffolds only without GA treatment for the osteoinduction activity. The possible explanations are (1) many kinds of secreted, circulating, and extracellular matrix-bound growth factors from SIS to significantly affect critical processes of tissue development and differentiation, (2) the exposure of SIS to GA resulted in significantly calcification, and (3) peri-implant fibrosis due to covalent bonding between collagen molecule by crosslinking reaction. In conclusion, it seems that SIS plays an important role for bone induction in SIS/PLA scaffolds for the application of tissue engineering area.

목분-폴리프로필렌 복합재의 점탄성적 성질과 표면특성 (Understanding the Viscoelastic Properties and Surface Characterization of woodflour-Polypropylene Composites)

  • 손정일;더글라스 가드너
    • 접착 및 계면
    • /
    • 제3권4호
    • /
    • pp.1-9
    • /
    • 2002
  • 본 연구의 목적은 목분과 폴리프로필렌으로 제조한 목질-고분자 복합재료의 점탄성적 성질에 미치는 결합제, 기핵제의 영향에 대해 고찰하는데 있으며, 목분과 결합제간의 esterification 반응이 목질-고분자 복합재의 기계적 성질에 미치는 영향 또는 고찰하고자 한다. 복합재는 목분 60%와 폴리프로필렌 40%를 혼합하여 제조하였으며, DMTA (Dynamic mechanical thermal analysis)를 사용하여 damping peaks (than ${\delta}$), storage modulus (E'), loss modulus (E")를 측정하였다. 또한 XPS (X-ray Photolectron Spectroscopy)를 사용하여 목분에 MAPP를 처리하기 전과 후의 상태를 고찰하였다. DMA 시험은 온도범위 $-20{\sim}100^{\circ}C$에서 여러가지 주파수 (1, 5, 10, 25 HZ) 조건과, 승온속도 $5^{\circ}C/min$으로 실시하였다. 이 시험결과를 토대로 복합재의 활성화에너지를 구하여 결합제와 기핵제가 목분과 고분자물질간 계면의 성질에 미치는 영향을 고찰하였다.

  • PDF

PET Imaging of Click-engineered PSMA-targeting Immune Cells in Normal Mice

  • Hye Won Kim;Won Chang Lee;In Ho Song;Hyun Soo Park;Sang Eun Kim
    • 대한방사성의약품학회지
    • /
    • 제8권2호
    • /
    • pp.53-61
    • /
    • 2022
  • This study aimed to increase the targeting ability against PSMA in cell therapy using metabolic glycoengineering and biorthogonal chemistry and to visualize cell trafficking using PET imaging. Cellular membranes of THP-1 cells were decorated with azide(-N3) using Ac4ManNAz by metabolic glycoengineering. Engineered THP-1 cells were conjugated with DBCO-bearing fluorophore (ADIBO-Cy5.5) for 1 h at different concentrations and analyzed by confocal fluorescence microscopy and flow cytometry. For PSAM ligand conjugation to THP-1 cells, Ac4ManNAz treated THP-1 cells were incubated with DBCO-PSMA ligand (ADIBO-GUL) at a final concentration with 100 µM for 1 h. To evaluate the effect on cell recognition, PSMA ligand conjugated THP-1 cells(as effectors) were co-cultured with PSMA positive 22RV1 (as target cells) at 3 : 1 a effector-to-target cell (E/T) ratio. The interaction between THP-1 and 22RV1 was monitored by confocal fluorescence microscopy. For preparing the radiolabeled THP-1, the cells were treated at the activity of ~ 740 kBq of [89Zr]Zr(oxinate)4/5 × 106 cells. Radiolabeled cells were analyzed for determination of cell-associated radioactivity by gamma counting and viability using MTS assay. In the cytotoxicity assay, THP-1 cells did not have any cytotoxicity even when the Ac4ManNAz concentration was 100 µM. In confocal microscopy and flow cytometry, THP-1 cells were efficiently labeled ADIBO-Cy5.5 in a dose-dependent manner, and the dose of 100 µM was the optimal concentration for the following experiments. The clusters of PSMA ligand-conjugated THP-1 cells and 22RV1 cells were identified, indicating cell-cell recognition over the cell surface between two types of cells. Cell radiolabeling efficiency was 54.5 ± 17.8%. THP-1 labeled with 0.09 ± 0.03 Bq/cell showed no significant cytotoxicity compared to unlabeled THP-1 up to 7 days. We successfully demonstrated that Ac4ManNAz treated cells were efficiently conjugated with ADIBO-GUL for preparing the PSMA-targeting cells, and [89Zr]Zr(oxinate)4 could be used to label cells without toxicity. It suggested that PSMA-ligand conjugated cell therapy could be improved cell targeting and be monitored by PET imaging.

Efficiency Improvement in InGaN-Based Solar Cells by Indium Tin Oxide Nano Dots Covered with ITO Films

  • Seo, Dong-Ju;Choi, Sang-Bae;Kang, Chang-Mo;Seo, Tae Hoon;Suh, Eun-Kyung;Lee, Dong-Seon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.345-346
    • /
    • 2013
  • InGaN material is being studied increasingly as a prospective material for solar cells. One of the merits for solar cell applications is that the band gap energy can be engineered from 0.7 eV for InN to 3.4 eV for GaN by varying of indium composition, which covers almost of solar spectrum from UV to IR. It is essential for better cell efficiency to improve not only the crystalline quality of the epitaxial layers but also fabrication of the solar cells. Fabrication includes transparent top electrodes and surface texturing which will improve the carrier extraction. Surface texturing is one of the most employed methods to enhance the extraction efficiency in LED fabrication and can be formed on a p-GaN surface, on an N-face of GaN, and even on an indium tin oxide (ITO) layer. Surface texturing method has also been adopted in InGaN-based solar cells and proved to enhance the efficiency. Since the texturing by direct etching of p-GaN, however, was known to induce the damage and result in degraded electrical properties, texturing has been studied widely on ITO layers. However, it is important to optimize the ITO thickness in Solar Cells applications since the reflectance is fluctuated by ITO thickness variation resulting in reduced light extraction at target wavelength. ITO texturing made by wet etching or dry etching was also revealed to increased series resistance in ITO film. In this work, we report a new way of texturing by deposition of thickness-optimized ITO films on ITO nano dots, which can further reduce the reflectance as well as electrical degradation originated from the ITO etching process.

  • PDF