• Title/Summary/Keyword: engine-based TCS

Search Result 11, Processing Time 0.019 seconds

Engine Control TCS using Throttle Angle Control and Estimated Load Torque (스로틀 개도 제어와 부하토크 추정을 이용한 엔진 제어 방식 TCS)

  • 강상민;윤마루;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.139-147
    • /
    • 2004
  • The purpose of engine control TCS is to regulate engine torque to keep driven wheel slip in a desired range. In this paper, engine control TCS using sliding mode control law based on engine model and estimated load torque is proposed. This system includes a two-level controller. Slip controller calculates desired wheel torque, and engine torque controller determines throttle angle for engine torque corresponding to desired wheel torque. Another issue is to measure load torque for model based controller design. Luenberger observer with state variables of load torque and engine speed solves this problem as estimating load torque. The performance of controller and observer is certificated by simulation using 8-degree vehicle model, Pacejka tire model, and 2-state engine model. The simulation results in various maneuvers during slippery and split road conditions showed that acceleration performance and ability of the vehicle with TCS is improved. Also, the load torque observer could estimate real load torque very well, so its performance was proved.

Development of engine control based TCS slip control algorithm using engine map (엔진맵에 기초한 엔진제어 TCS 슬립제어 알고리듬의 개발)

  • Song, Jae-Bok;Kim, Byeong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.428-436
    • /
    • 1998
  • A TCS slip control system improves acceleration capability and steerability on slippery roads through engine torgue and/or brake torque control. This research mainly deals with the engine control algorithm via the adjustment of the engine throttle angle. The following new control strategy is proposed and investigated ; the TCS slip controller whose input is the difference between the desired driving wheel speed corresponding to the optimum slip ratio and the actual speed yields the target engine torque and then estimates the throttle angle based on the engine performance curve. Various simulation and hardware-in-the-loop simulation have been carried out. The results show the proposed strategy may compensate for the inherent nonlinearity between variation of the throttle angle and variation of the engine torque and produce better performance than the previous strategies without the engine map, especially in the high speed region.

HWILS Implementation of TCS Control System Based on Throttle Adjustment Approach (스로틀 조절 방식에 기초한 TCS 슬립 제어 시스템의 HWILS 구현)

  • 송재복;홍동우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.45-53
    • /
    • 1998
  • Traction control systems(TCS) improve vehicle acceleration performance and stability, particularly on slippery roads through engine torque and/or brake torque control. This research mainly deals with the engine control algorithm based on adjustment of the engine throttle valve opening. Hardware-in-the-loop simulation(HWILS) is carried out where the actual hardware is used for the engine/automatic transmission and TCS controller, while various vehicle dynamics are simulated on real-time basis. Also, use of the dynamometer is made in order to implement the tractive force that a road applies to the tire. Although some restrictions are imposed mainly due to the capability of the synamometer, simplified HWILS results show that the slip control algorithm can improve the vehicle acceleration performance for low-friction roads.

  • PDF

DEVELOPMENT OF A NETWORK-BASED TRACTION CONTROL SYSTEM, VALIDATION OF ITS TRACTION CONTROL ALGORITHM AND EVALUATION OF ITS PERFORMANCE USING NET-HILS

  • Ryu, J.;Yoon, M.;SunWoo, M.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.687-695
    • /
    • 2006
  • This paper presents a network-based traction control system(TCS), where several electric control units(ECUs) are connected by a controller area network(CAN) communication system. The control system consists of four ECUs: the electric throttle controller, the transmission controller, the engine controller and the traction controller. In order to validate the traction control algorithm of the network-based TCS and evaluate its performance, a Hardware-In-the-Loop Simulation(HILS) environment was developed. Herein we propose a new concept of the HILS environment called the network-based HILS(Net-HILS) for the development and validation of network-based control systems which include smart sensors or actuators. In this study, we report that we have designed a network-based TCS, validated its algorithm and evaluated its performance using Net-HILS.

WHEEL SLIP CONTROL WITH MOVING SLIDING SURFACE FOR TRACTION CONTROL SYSTEM

  • Chun, K.;Sunwoo, M.
    • International Journal of Automotive Technology
    • /
    • v.5 no.2
    • /
    • pp.123-133
    • /
    • 2004
  • This paper describes a robust and fast wheel slip tracking control using a moving sliding surface technique. A traction control system (TCS) is the active safety system used to prevent the wheel slipping and thus improve acceleration performance, stability and steerability on slippery roads through the engine torque and/or brake torque control. This paper presents a wheel slip control for TCS through the engine torque control. The proposed controller can track a reference input wheel slip in a predetermined time. The design strategy investigated is based on a moving sliding surface that only contains the error between the reference input wheel slip and the actual wheel slip. The used moving sliding mode was originally designed to ensure that the states remain on a sliding surface, thereby achieving robustness and eliminating chattering. The improved robustness in driving is important due to changes, such as from dry road to wet road or vice versa which always happen in working conditions. Simulations are performed to demonstrate the effectiveness of the proposed moving sliding mode controller.

Development of Network-based Traction Control System and Study its on Performance Evaluation using Net-HILS (Net-HILS를 이용한 네트워크기반 구동력제어시스템 개발 및 성능평가에 관한 연구)

  • Ryu, Jung-Hwan;Yoon, Ma-Ru;Hwang, In-Yong;SunWoo, Myoung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.47-57
    • /
    • 2006
  • This paper presents a network-based traction control system(TCS), where several electric control units (ECUs) are connected by a controller area network(CAN) communication system. The control system consists of four ECUs: the electricthrottle controller, the transmission controller, the engine controller and the traction controller. In order to validate the traction control algorithm of the network-based TCS and evaluate its performance, a Hardware-In-the-Loop Simulation(HILS) environment was developed. Herein we propose a new concept of the HILS environment called the network-based HILS(Net-HILS) for the development and validation of network-based control systems which include smart sensors or actuators. In this study, we report that we have designed a network-based TCS, validated its algorithm and evaluated its performance using Net-HILS.

Control System of Throttle Actrator for TCS (TCS용 스로틀 액츄에이터 제어 시스템)

  • 송재복;김효준;민덕인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.191-201
    • /
    • 1997
  • Accurate positioning of a throttle valve is required to implement the traction control system(TCS) which improves acceleration performance in slippery roads. In this research, position control system is developed for the main throttle actuator(MTA) system which uses one throttle actuation for small volume and DC servo motor for fast response. In order to drive DC motor, PWM signal generator and PWM amplifier were built and interfaced to the motor and controller. Digital PID control law is used as basic control algorithm. In order to prevent overshoot and improve accuracy, velocity profiles are generated and implemented whenever the targer throttle angle is given from the TCS controller. Thanks to velocity profiles, the control performance was very good and only one set of PID gains was used to cover the entire operating range. Also, the resolution of position is about 0.4$^{\circ}C$, which is better than that of stepping motor also used as throttle actuator in some products. The response time of the developed system is also fast enough to implement the engine control based TCS algorithm.

  • PDF

A Study on the Engine/Brake integrated VDC System using Neural Network (신경망을 이용한 엔진/브레이크 통합 VDC 시스템에 관한 연구)

  • Ji, Kang-Hoon;Jeong, Kwang-Young;Kim, Sung-Gaun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.414-421
    • /
    • 2007
  • This paper presents a engine/brake integrated VDC(Vehicle Dynamic Control) system using neural network algorithm methods for wheel slip and yaw rate control. For stable performance of vehicle, not only is the lateral motion control(wheel slip control) important but the yaw motion control of the vehicle is crucial. The proposed NNPI(Neural Network Proportional-Integral) controller operates at throttle angle to improve the performance of wheel slip. Also, the suggested NNPID controller performs at brake system to improve steering performance. The proposed controller consists of multi-hidden layer neural network structure and PID control strategy for self-learning of gain scheduling. Computer Simulation have been performed to verify the proposed neural network based control scheme of 17 dof vehicle dynamic model which is implemented in MATLAB Simulink.

Implementation of Telematics System Using Driving Pattern Detection Algorithm (운전패턴 검출 알고리즘을 적응한 텔레매틱스 단말기 구현)

  • Kin, Gi-Seok;Jung, Hee-Seok;Yun, Kee-Bang;Jeong, Kyung-Hoon;Kim, Ki-Doo
    • 전자공학회논문지 IE
    • /
    • v.45 no.4
    • /
    • pp.33-41
    • /
    • 2008
  • Telematics system includes the "vehicle remote diagnosis technology", "driving pattern analysis technology" which are commercially attractive in the real life. To implement those technologies, we need vehicle signal interface, vehicle diagnosis interface, accelerometer/yaw-rate sensor interface, GPS data processing, driving pattern analysis, and CDMA data processing technique. Based on these technologies, we analyze the error existence by diagnosing the EMS(Engine Management System), TMS(Transmission Management System), ABS/TCS, A/BAG in real time. And we are checking about a driving pattern and management of the vehicle, which are sent to the information center through the wireless communication. These database results will make the efficient vehicle and driver management possible. We show the effectiveness of our results by field driving test after completing the H/W & S/W design and implementation for vehicle remote diagnosis and driving pattern analysis.

S&T Policy Directions for Green Growth in Korea

  • Jang, Jin Gyu
    • STI Policy Review
    • /
    • v.1 no.1
    • /
    • pp.1-21
    • /
    • 2010
  • To achieve the "low carbon green growth" vision, the first step is securing core technologies. Therefore, S&T policy direction for green technology development is urgently needed. As of 2008, investment in green technology (GT) development hovered around 10% of the government's total R&D budget. Thus, the Korean government developed a plan to increase that percentage to 15%, by 2013. To develop reasonable investment strategies for green technology development, targeted strategies that reflect technology and market changes by green technology area are needed. However, the overall planning and coordination of national GT development is currently split among, approximately, 10 government ministries. To establish an efficient green technology development system, the so-called "Green Technology R&D Council" should be launched in collaboration with the Presidential Committee on Green Growth and the National Science and Technology Council. Furthermore, to build a solid foundation for commercializing the outcomes of GT development projects and promote GT transfer, the government should undertake two initiatives. First, the government should reinforce GT R&D performance management, by establishing a GT R&D performance management and evaluation system. Second, the government should implement the "customized packaged support for promoting green technology business rights and commercialization" and present "e-marketplace for market-oriented green technologies". Creating a pan-ministerial policy for GT development policy would necessitate restructuring the HR(Human Resources) development system, which is currently separated by technology area. Based upon mid/long-term HR supply and demand forecasts, the government should design differentiated HR development projects, continuously evaluate those projects, and reflect the evaluation results in future policy development. Finally, to create new GT-related industries, the "Green TCS (Testing, Certification, and Standards) System" needs to be implemented. For objective evaluation and diffusion of R&D results by green technology area, a common standardization plan for testing, analysis, and measurement, like the "Green TCS", should be developed and integrated.