• Title/Summary/Keyword: engine vibration

Search Result 947, Processing Time 0.024 seconds

Vibration Control of an Engine Mount Featuring MR Fluid (MR 유체를 이용한 엔진마운트의 진동제어)

  • 이현희;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.213-218
    • /
    • 2001
  • A magnetorheological(MR) engine mount for a passenger vehicle and its vibration control performance is experimentally evaluated. A mixed-mode model for the MR engine is derived by incorporating Herschel-Bulkely model of the MR fluid. After analyzing the field-dependent damping force, a appropriate size of the MR engine mount is manufactured. The field-dependent is displacement transmissibility of the engine mount is evaluated in the frequency domain at various excitation levels. In addition, time-dependant damping force is experimentally investigated by changing the excitation amplitude.

  • PDF

A Study on the Theoretical Calculation of the Exciting Harmonics for Torsional Vibration of Diesel Engine Shafting (디젤엔진 축계 비틀림진동 기진력 하모닉스의 이론적 계산에 관한 연구)

  • 이용진;이돈출;김의간;전효중
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.76-81
    • /
    • 1997
  • In this paper, the combustion characteristics of marine diesel engines are investigated. Also, the pv diagrams of diesel engine and the torque harmonic coefficients are calculated. Their reliability are verified by comparing the calculated values with those of engine maker. The calculated results of torsional vibration with these theoretical harmonic coefficients show very good agreement with those of engine maker's results. The results of this study may be useful for the calculation of torsional vibration for diesel engine propulsion shafting, especially for 4-stroke engine which is not easy to get harmonics.

  • PDF

Optimum Design of Engine Mount System Considering Body Flexibility (차체의 유연성을 고려한 엔진마운트 최적설계)

  • 황인수;김태욱;박우선;고병식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.319-325
    • /
    • 1997
  • As customer's demand for vehicle comfort is getting increased, vibration problem is very important issue in vehicle development. Engine is the main factor causing vehicle vibration, so that we should isolate detrimental transmitted excitation from engine. In order to solve this problem engine mounting system was properly optimized. Simulation was performed not only rigid body mode analysis but also flexible body mode analysis. We obtained the optimal locations and stiffness of engine mounts from simulation results, and had reasonable results from considering flexible body mode than only rigid body mode analysis.

  • PDF

A Vibration Isolation Design for Engine Room Opening Deck around Heavy Spare Parts of the Main Engine (Main Engine의 Heavy Spare Parts가 설치된 Engine Room Opening Deck의 방진 설계 사례)

  • Jeon, Yong-Hoon;Lim, Gu-Sub;Jeong, Tae-Seok
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2009.09a
    • /
    • pp.93-96
    • /
    • 2009
  • Foundation structure for the main engine heavy spare parts in the engine room is susceptible to resonance problem due to outfitting weight. In addition the deck floor has a large opening for the main engine installation and maintenance, which further weakens the foundation structure. To reinforce the weak structure, two types of approaches have been used; 1) insert an H-pillar below or above the floor and 2) increase the stiffener size. In this paper, the H-pillar approach is used to solve the vibration problem of the foundation structure in the engine room opening area. A commercial program is used to analyze the vibration problem ad to find the location and the size of the H-pillar. Modal test at the quay and on-board vibration measurement during the sea trial have confirmed the validity of inserting an H-pillar below the floor.

  • PDF

An Experimental Study for Integrated Vibration Monitoring System Development in Marine Diesel Engine (선박용 디젤 엔진의 종합 진동 모니터닝 시스템 개발을 위한 실험적인 연구)

  • Lee, D.C.;Joo, K.S.;Nam, T.K.;Kim, S.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.880-885
    • /
    • 2007
  • Diesel engines have been widely used in ships and power plants because of its higher thermal efficiency, mobility and durability compared to other prime movers. Though these merits, diesel engine including main components are sometimes vibrated due to higher combustion pressure in cylinders. Especially torsional, axial and structural vibrations in propulsion shafting may be severely manifested by the malfunction of torsional and axial dampers and misfiring and unbalanced load in cylinder. The structural vibration of main body and turbocharger core hole are also occurred by the loosen top bracing and excess wear-out or failure of turbocharger's bearings. The marine diesel engine should be safely designed from these vibrations. This paper introduces experimental methods to develop the prototype of integrated vibration monitoring system for marine diesel engine.

  • PDF

The Dynamic Characteristic Test of Oil pump Integrated Balance Shaft Module (오일펌프 내장형 밸런스 샤프트 모듈의 동특성 시험)

  • Seong, Eun-Je;Kang, Dae-Gyu;Jeong, Chan-Yong;Han, Chang-Soo;Kim, Myung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.403-408
    • /
    • 2007
  • According as diesel automobile are produced, reduce noise and vibration that is occurred by characteristic of diesel engine, and need engine room layout optimization and research for light weight of parts. Balance Shaft Module is module parts for vehicles engine to improve performance and efficiency of engine and reduce noise and vibration. These days, an oil pump integrated balance shaft module and an oil sump integrated balance shaft module is on the rising for optimizing of engine room. In this study, produced prototype of oil pump integrated type balance shaft module, and achieved dynamic characteristic test about experimental modal analysis and noise/vibration of balance shaft module.

  • PDF

Experimental Study of Engine Mount Optimization to Improve NVH Quality (NVH 성능향상을 위한 엔진마운트 최적설계에 관한 실험적 연구)

  • 이준용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.330-337
    • /
    • 1996
  • The purpose of engine mount system is to reduce the noise and vibration caused by engine vibration, and to decouple the roll and bounce mode at idle. To reduce the noise and vibration level in a vehicle, it is important to make the design optimization of engine mount system that considered the moment of inertia and inclination of mount rubber. As a result, according to the definition of Torque Rool Axis (TRA), the vibration axis at idle must be on the TRA or very close to it. In this paper, we studied the effect of the design optimization of engine mount system. And we have a good NVH performance.

  • PDF

Unstable Torsional Vibration on the Propulsion Shafting System with Diesel Engine Driven Generator (디젤엔진 구동 발전기를 갖는 추진축계의 불안정한 비틀림진동)

  • 이돈출
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.936-942
    • /
    • 1999
  • Unstable torsional vibration on the marine ship's propulsion shafting system with diesel engine occurred due to a slippage of multi-friction clutch which was installed between increasing gear and shaft generator. In this paper, the mechanism of this vibration was verified via torsional, whirling, axial and structural vibration measurements of shafting system and noise measurement of gear box. And it was also identified by the theoretical analysis method.

  • PDF

A Study on Vibration Characteristics of Engine Mount System of a Medium Duty Truck at the Key On/Off (중형트럭 시동 시 엔진마운팅 시스템의 진동 특성 연구)

  • Kuk, Jong-Young;Lim, Jung-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.97-102
    • /
    • 2008
  • The vibration of a vehicle, which is caused by and transmitted from the engine, has significant effect on the ride comfort and the dynamic characteristics of the engine mount system have direct influence on the vibration and noise of the vehicle. This paper examines the body shake caused by the engine excitation force on engine key on/off of a medium truck by experiment and simulation. The analysis model consists of the engine, a body including the frame, front and rear suspensions and tires. The force element between the body and the suspension is modeled as a combination of a suspension spring and a damper. The engine shake obtained from the experiment was compared with the result of the computer simulation, and by using the verified computer model, parametric study of the body shake on engine key on/off is performed with changing the stiffness of an engine mount rubber, the engine mount angle, and the position of engine mounts.

Engine Mounting System Optimization for Improve NVH (NVH 향상을 위한 엔진 설치 시스템 최적화)

  • Kim, Jang-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.4665-4671
    • /
    • 2013
  • Engine mounting system is the most responsible system for NVH performance of vehicle. The vibration at idle shake, road shake, Key ON/OFF, gear shift tuned by the engine mount position and stiffness. Previously described Engine mounting system theory investigated and summarized in this paper. Decoupling of the Power train rigid mode and Reducing the angle between Torque-Roll-Axis and Elastic-roll-Axis is starting point of optimization. Multi-optimization analysis was performed because of variety simulation case and FE-model. Eventually, Find the best mount location and the stiffness has improved the performance of the vehicle NVH.