• 제목/요약/키워드: engine oil temperature

검색결과 219건 처리시간 0.028초

EGR 제어를 통한 디젤 및 바이오디젤의 저온연소 특성 비교 (Comparisons of Low Temperature Combustion Characteristics between Diesel and Biodiesel According to EGR control)

  • 이용규;장재훈;이선엽;오승묵
    • 한국분무공학회지
    • /
    • 제16권3호
    • /
    • pp.119-125
    • /
    • 2011
  • Due to the oxygen contents in biodiesel, application of the fuel to compression ignition engines has significant advantages in terms of lowering PM formation in the combustion chamber. In recent days, considerable studies have been performed to extend the low temperature combustion regime in diesel engines by applying biodiesel fuel. In this work, low temperature combustion characteristics of biodiesel blends in dilution controlled regime were investigated at a fixed engine operating condition in a single cylinder diesel engine, and the comparisons of engine performances and emission characteristics between biodiesel and conventional diesel fuel were carried out. Results show that low temperature combustion can be achieved at $O_2$ concentration of around 7~8% for both biodiesel and diesel fuels. Especially, by use of biodiesel, noticeable reduction (maximum 50% of smoke was observed at low and middle loads compared to conventional diesel fuel. In addition, THC(total hydrocarbon) and CO(Carbon monoxide) emissions decreased by substantial amounts for biodiesel fuel. Results also indicate that even though about 10% loss of engine power as well as 14% increase of fuel consumption rate was observed due to lower LHV(lower heating value) of biodiesel, thermal efficiencies for biodiesel fuel were slightly elevated because of power recovery phenomenon.

연비 개선 및 CO2 저감을 위한 승용디젤 차량의 클러치타입 워터펌프 적용에 따른 실험적 연구 (An Experimental Study on the Clutch Type Water Pump of Diesel Passenger Vehicle for Reducing Fuel Consumption and CO2 Emission)

  • 정수진;박정권;오창복;조용석
    • 한국자동차공학회논문집
    • /
    • 제20권2호
    • /
    • pp.123-134
    • /
    • 2012
  • A typical cooling system of an engine relies on a water pump that circulates the coolant through the system. The pump is typically driven by the crankshaft through a mechanical link with engine starting. In order to reduce the friction and warm-up time of an engine, the clutch-type water pump (CWP) was applied in 2.0 liter diesel vehicle. The clutch-type water pump can force cooling water to supply into an engine by the operation of an electromagnetic clutch equipped as the inner part of pump system. The onset of CWP is decided by temperature of cooling water and engine oil. And, the control logic for an optimal operation of the clutch-type water pump was developed and applied in engine and vehicle tests. In this study, the warm-up time was measured with the conventional water pump and clutch-type water pump in engine tests. And the emission and the fuel consumption were evaluated under NEDC mode in vehicle tests. Also, tests were carried out for the various temperature conditions starting the operation of CWP. From the results of the study, the application of CWP can improve the fuel consumption and $CO_2$ reduction by about 3%.

자동차 엔진에서 O-링의 압출거동에 관한 수치적 연구 (Numerical Simulations on the O-ring Extrusion in Automotive Engines)

  • 이일권;김청균
    • Tribology and Lubricants
    • /
    • 제15권4호
    • /
    • pp.297-303
    • /
    • 1999
  • O-rings in automotive engines are important components such as a coolant pipe, engine oil circulating lines and fuel injector for sealing that makes efficient performance of the engine. Life cycle of O-rings is effected in environments of the O-ring seal, like that applied pressure, working temperature, precompressed ratio and materials. It is related in extrusion, expansion and fatigue failure of O-rings. In this paper, an pressurized, compressed elastomeric O-ring inserted into a rectangular groove is analysed numerically using the nonlinear finite element method. The calculated FEM results showed that extrusion ratio and contact stress are strongly related to the gap clearance and edge radius of the groove.

MDO (Marine Diesel Oil) 에멀젼 연료에 의한 디젤엔진의 배출가스 저감 (The Exhaust Gas Reduction of Diesel Engine by MDO (Marine Diesel Oil) Emulsion Fuel)

  • 김문찬
    • 대한환경공학회지
    • /
    • 제36권7호
    • /
    • pp.476-482
    • /
    • 2014
  • 본 연구는 에멀젼 연료의 특성과 배출가스에 관하여 연구하였다. 엔진 배출가스 측정은 엔진 dinamometer로 실시하였다. 유화연료는 연소실내에서 미세폭발을 일으켜 연료를 잘게 쪼개어 주어 smoke를 감소시킨다. 그리고 물이 연소실내의 기화열을 빼앗아 연소실 내부의 온도를 낮추어 NOx 생성을 억제하는 효과를 갖는다. ND-13모드의 각 모드별 배출가스온도가 MDO에 비해 유화연료를 사용했을 때 낮게 나온 것으로 뒷받침 될 수 있었다. 유화연료의 함수율이 증가함에 따라 NOx와 smoke의 배출량은 줄어들었으며, 출력도 함수율 증가에 따라 유화연료 자체의 발열량 감소로 인하여 줄어든 것으로 판단된다. ND-13모드에서 MDO 유화연료를 시험결과 함수율 17% 유화연료의 NOx 감소량은 약 24%, smoke의 총감소량은 약 73%, $SO_2$ 감소량은 약 11%, 그리고 약 13%의 출력손실을 확인하였다.

선박 디젤기관의 배기배출물 특성이 흡기 온도변화에 미치는 영향 (Effect of Changing the Intake Air Temperature in a Marine Diesel Engine on the Characteristics of Exhaust Gas Emission)

  • 조상곤
    • 해양환경안전학회지
    • /
    • 제25권6호
    • /
    • pp.788-794
    • /
    • 2019
  • 최근 지구의 기후변화는 온실가스가 원인으로 전 세계적 대기환경문제로 크게 부각되고 있다. 국내에서도 기후변화에 적극 대응하기 위한 기술개발이 꾸준히 진행되고 있다. 날씨의 이상고온으로 인한 환경에 미치는 영향과 갑작스런 집중호우가 환경에 미치는 영향을 대상으로 하였다. 우리생활 주변 대기온도가 상승하였을 때 온도변화에 의한 대기오염발생에 미치는 영향을 연구하고자 한다. 본 연구의 실험조건은 선박 디젤기관에서 회전수 1400 rpm, 1600 rpm 그리고 1800 rpm, 부하는 0 %에서 25 %씩 100 %까지 하였고, 흡기 온도변화는 20℃에서 50℃까지 구분하여 연구하였다. 연구한 결과 흡기온도가 증가함에 따라 일산화탄소 및 탄화수소는 약간 감소하였으나 연료소비율, 질소산화물, PM은 약간 증가하였다. 또한 연소온도는 큰 변화가 없었다.

5% 황산용액에서 배기밸브 보수 용접부의 부식 특성에 미치는 용접방법과 용접봉의 영향-1 (Effect of Welding method and Welding Material to Corrosion Property of Repair Weld Zone for Exhaust Valve in 5% H2SO4 Solution -1)

  • 김진경;조황래;이명훈;김윤해;문경만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권6호
    • /
    • pp.744-752
    • /
    • 2007
  • Recently a fuel oil of the diesel engine in the ship is being changed with low quality as the oil price is higher more and more. Therefore the wear and corrosion in all parts of the engine like cylinder liner ring groove of piston crown, spindle and seat ring of exhaust valve are increased with using of heavy oil of low quality In particular the degree of wear and corrosion in between valve spindle and seat ring are more serious compared to the other parts of the engine due to operating in severe environment such as the high temperature of exhaust gas and repeating impact. Thus the repair weld to the valve spindle and seat ring is a unique method to prolong the life of the exhaust valve in an economical point of view In this study. corrosion property of both weld metal zone and base metal was investigated with some electrochemical methods such as measurement of corrosion potential, cathodic and anodic polarization curves, cyclic voltammogram and polarization resistance etc. in 5% $H_2SO_4$ solution. in the case of being welded with some welding methods and welding materials to the exhaust valve specimen as the base metal. In all cases. the values of hardness of the weld metal zone were more high than that of the base metal. And their corrosion resistance were also superior to the base metal. The weld metal of A2F(AC SMAW: 2 pass welding with foreign electrode) showed a relatively good results to the corrosion resistance as well as the hardness compared to the ether welding methods and welding materials. Moreover it indicated that hardness of the weld metal by the domestic electrode was considerably high compared to that of the foreign electrode.

보수용접봉의 종류와 용접후 열처리가 용접금속부의 내식성에 미치는 영향에 관한 전기화학적 평가 (An Electrochemical Evaluation on the Corrosion Resistance of Welding Zone due to Kinds of Repair Welding Filler Metals and Post Weld Heat Treatment)

  • 신재현;문경만
    • Corrosion Science and Technology
    • /
    • 제9권6호
    • /
    • pp.310-316
    • /
    • 2010
  • Recently a fuel oil of the diesel engine of the marine ship is being changed with heavy oil of low quality as the oil price is higher more and more. Therefore the wear and corrosion in all parts of the engine such as cylinder liner, piston crown, spindle and seat ring of exhaust valves are predominantly increased. In particular the degree of wear and corrosion of piston crown is more seriously compared to the other parts of the engine due to operating in severe environment such as the high temperature of exhaust gas and repeating impact. Thus the repair weldment of the piston crown is a unique method to prolong the its life in a economical point of view. In this case, filler metals having a high corrosion and wear resistance such as stellite 6, Inconel 625 and Inconel 718 are mainly being used for repair welding. However it has been often happened that piston crown on the ship,s job site is being actually inevitably welded with mild filler metals. Therefore in this study, filler metals such as E4301, E4313 and E4316 were welded at SS401 steel as the base metal, and corrosion property of their weld metals in the case of post weld heat treatment or not was investigated with some electrochemical methods such as measurement of corrosion potential, cathodic and anodic polarization curves, cyclic voltammogram and polarization resistance etc. in 0.1% $H_2SO_4$ solution. Corrosion resistance of the weld metal of E4301 was better than the other weld metals in the case of no heat treatment, however, its resistance was considerably decreased with post weld heat treatment(annealing:$625^{\circ}C$, 2 hr) compared to other weld metals. The weld metals of E4313 and E4316 showed a relatively good corrosion resistance by post weld heat treatment.

INFLUENCING (NANO)PARTICLE EMISSIONS OF 2-STROKE SCOOTERS

  • Czerwinski, J.;Comte, P.;Reutimann, F.;Mayer, A.
    • International Journal of Automotive Technology
    • /
    • 제7권3호
    • /
    • pp.237-244
    • /
    • 2006
  • Limited and nonlimited emissions of scooters were analysed during several annual research programs of the Swiss Agency of Environment Forests and Landscape(SAEFL, BUWAL). Small scooters, which are very much used in the congested centers of several cities are a remarkable source of air pollution. Therefore every effort to reduce the emissions is an important contribution to improve the air quality in urban centers. In the present work detailed investigations of particle emissions of different 2-stroke scooters with direct injection and with carburetor were performed. The nanoparticulate emissions with different lube oils and fuels were measured by means of SMPS, (CPC) and NanoMet. Also the particle mass emission(PM) was measured with the same method as for Diesel engines. It can be stated, that the oil and fuel quality have a considerable influence on the particle emissions, which are mainly oil condensates. The engine technology influences the (nano)particle emissions by: mixture preparation, mixture tuning, oil consumption, postoxidation, quality, condition and temperature of the catalyst. Since the particulate emission of the 2-S consists mainly of lube oil condensates the minimization of oil consumption stays always an important goal.

디젤차량용 연료히터의 활성화분석용 데이터 모니터링 장치 (Data Monitoring System for Activation Analysis Based on Fuel Heater of Diesel Cars)

  • 이보희;손병민;조상;윤달환
    • 전기전자학회논문지
    • /
    • 제18권2호
    • /
    • pp.179-184
    • /
    • 2014
  • 겨울철 저온환경에서 디젤 엔진의 점화를 지원하는 통합형연료히터의 활성화분석용 데이터 모니터랑 장치를 개발한다. 디젤엔진의 연료인 경유는 일정한 온도 이하로 내려가면 파라핀과 같은 반고체 상태인 왁싱(Waxing)물질을 형성하여 엔진시동이 잘 걸리지 않는다. 이러한 엔진점화의 시동성능 평가에 중요한 요소로 극저온에서 극고온사이 온도변화에 따른 엔진점화 시간, 히터 저항과 전류에 따른 지연시간 및 유압 등이 있다. 따라서 연료라인과 연료 히터간 활성화 동작을 분석하기 위해 센서 장치를 개발하고, 온도 및 압력 데이터를 모니터링하여 연료히터의 성능을 측정한다. 연료히터 연료라인의 온도와 압력에서 측정된 데이터는 모바일 기기를 사용하여 원격으로 데이터를 수집하고, 데이터 분석을 통해 연료히터의 문제점을 찾을 수 있는 장치의 유용성을 제시한다.

Piston Crevice Hydrocarbon Oxidation During Expansion Process in an SI Engine

  • Kyoungdoug Min;Kim, Sejun
    • Journal of Mechanical Science and Technology
    • /
    • 제17권6호
    • /
    • pp.888-895
    • /
    • 2003
  • Combustion chamber crevices in SI engines are identified as the largest contributors to the engine-out hydrocarbon emissions. The largest crevice is the piston ring-pack crevice. A numerical simulation method was developed, which would allow to predict and understand the oxidation process of piston crevice hydrocarbons. A computational mesh with a moving grid to represent the piston motion was built and a 4-step oxidation model involving seven species was used. The sixteen coefficients in the rate expressions of 4-step oxidation model are optimized based on the results from a study on the detailed chemical kinetic mechanism of oxidation in the engine combustion chamber. Propane was used as the fuel in order to eliminate oil layer absorption and the liquid fuel effect. Initial conditions of the burned gas temperature and in-cylinder pressure were obtained from the 2-zone cycle simulation model. And the simulation was carried out from the end of combustion to the exhaust valve opening for various engine speeds, loads, equivalence ratios and crevice volumes. The total hydrocarbon (THC) oxidation in the crevice during the expansion stroke was 54.9% at 1500 rpm and 0.4 bar (warmed-up condition). The oxidation rate increased at high loads, high swirl ratios, and near stoichiometric conditions. As the crevice volume increased, the amount of unburned HC left at EVO (Exhaust Valve Opening) increased slightly.