• Title/Summary/Keyword: energy supply and demand

Search Result 527, Processing Time 0.03 seconds

A Study on the Performance Evaluation of CNC Control Units of an Old Planar Miller Using Remanufacturing Technology (재제조 기술을 이용한 노후 플래너 밀러의 CNC 제어 장치 성능평가에 관한 연구)

  • Lee, Seong-Won;Chung, Won-Ji;Roh, Young-Hwa;Kong, Seok-Hwan;Lee, Hyun-Jun;Kim, Jin-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.1097-1102
    • /
    • 2022
  • With the continuous development of the current industry, the current global environment is in a very serious situation, with resource supply and demand dependent on imports and huge costs for waste disposal due to the depletion of resources and mass generation of industrial waste. Its limitations have already been revealed in many fields, and the importance of re-manufacturing is drawing attention as a countermeasure to these problems. Re-manufacturing aims to recover products that are in the aging and disposal stages, recover to performance close to new products, and re-commercialize them. Among them, most of the machine tools are made of materials such as steel and cast iron with large structures, and raw materials are widely used when producing new products. In addition, since a lot of carbon is generated due to production, it is an object that can obtain a great re-manufacturing effect. Planner millers belonging to large machine tools are one of the machine tool equipment that can greatly reduce resources and energy through re-manufacturing because the structure is very large and the casting is several to tens of tons. Through this machine tool, performance tests and results are derived on the development of re-manufacturing source technology and domestic servo motor and CNC control device.

Effect of Temperature and Body Size on Oxygen Consumption and Ammonia Excretion of Oyster, Crassostrea gigas (굴, Crassostrea gigas의 대사율에 미치는 수온 및 개체크기의 영향)

  • Shin, Yun-Kyung;Hur, Young-Baek;Myeong, Jeong-In;Lee, Sik
    • The Korean Journal of Malacology
    • /
    • v.24 no.3
    • /
    • pp.261-267
    • /
    • 2008
  • The tendency of metabolism in oyster, Crassostrea gigas, was investigated in relation to the water temperature and salinity. Oxygen consumption and ammonia excretion were measured and O:N ratio were calculated according to the water temperature from February 2007 to September 2008 and body size. The relationship between oxygen consumption and body weight has been examined in C. gigas. The weight-specific oxygen consumption rate (mg $O_2$/g/h) varied inversely with size. Oxygen consumption and ammonia excretion increased with an increase in water temperature. O:N ratio measured in this study ranged from 8 to 40 under ordinary sea water and the ratio was 8 at $25^{\circ}C$ and 16 at $10^{\circ}C$. This indicates that oyster mainly use the protein as the primary catabolic substrate during gametogenesis. Lower O:N ratio in winter suggests that oysters have to meet their energy demand by metabolizing protein to survive in stressful conditions such as low temperature and lack of sufficient food supply. This studies will provide the basic data for oyster culture farm in assessing the carrying capacity and sustainable management.

  • PDF

Experimental Study on Unconfined Compression Strength and Split Tensile Strength Properties in relation to Freezing Temperature and Loading Rate of Frozen Soil (동결 온도와 재하속도에 따른 동결토의 일축압축 및 쪼갬인장 강도특성)

  • Seo, Young-Kyo;Choi, Heon-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.19-26
    • /
    • 2012
  • Recently the world has been suffering from difficulties related to the demand and supply of energy due to the democratic movements sweeping across the Middle East. Consequently, many have turned their attention to never-developed extreme regions such as the polar lands or deep sea, which contain many underground resources. This research investigated the strength and initial elastic modulus values of eternally frozen ground through a uniaxial compression test and indirect tensile test using frozen artificial soil specimens. To ensure accurate test results, a sandymud mixture of standard Jumunjin sand and kaolinite (20% in weight) was used for the specimens in these laboratory tests. Specimen were prepared by varying the water content ratio (7%, 15%, and 20%). Then, the variation in the strength value, depending on the water content, was observed. This research also established three kinds of environments under freezing temperatures of $-5^{\circ}C$, $-10^{\circ}C$, and $-15^{\circ}C$. Then, the variation in the strength value was observed, depending on the freezing environment. In addition, the tests divided the loading rate into 6 phases and observed the variation in the stress-strain ratio, depending on the loading rate. The test data showed that a lower freezing temperature resulted in a larger strength value. An increase in the ice content in the specimen with the increase in the water content ratio influenced the strength value of the specimen. A faster load rate had a greater influence on the uniaxial compression and indirect tensile strengths of a frozen specimen and produced a different strength engineering property through the initial tangential modulus of elasticity. Finally, the long-term strength under a constant water content ratio and freezing temperature was checked by producing stress-strain ratio curves depending on the loading rate.

Parameter Study of Boiling Model for CFD Simulation of Multiphase-Thermal Flow in a Pipe

  • Chung, Soh-Myung;Seo, Yong-Seok;Jeon, Gyu-Mok;Kim, Jae-Won;Park, Jong-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.50-58
    • /
    • 2021
  • The demand for eco-friendly energy is expected to increase due to the recently strengthened environmental regulations. In particular, the flow inside the pipe used in a cargo handling system (CHS) or fuel gas supply system (FGSS) of hydrogen transport ships and hydrogen-powered ships exhibits a very complex pattern of multiphase-thermal flow, including the boiling phenomenon and high accuracy analysis is required concerning safety. In this study, a feasibility study applying the boiling model was conducted to analyze the multiphase-thermal flow in the pipe considering the phase change. Two types of boiling models were employed and compared to implement the subcooled boiling phenomenon in nucleate boiling numerically. One was the "Rohsenow boiling model", which is the most commonly used one among the VOF (Volume-of-Fluid) boiling models under the Eulerian-Eulerian framework. The other was the "wall boiling model", which is suitable for nucleate boiling among the Eulerian multiphase models. Moreover, a comparative study was conducted by combining the nucleate site density and bubble departure diameter model that could influence the accuracy of the wall boiling model. A comparison of the Rohsenow boiling and the wall boiling models showed that the wall boiling model relatively well represented the process of bubble formation and development, even though more computation time was consumed. Among the combination of models used in the wall boiling model, the simulation results were affected significantly by the bubble departure diameter model, which had a very close relationship with the grid size. The present results are expected to provide useful information for identifying the characteristics of various parameters of the boiling model used in CFD simulations of multiphase-thermalflow, including phase change and selecting the appropriate parameters.

Current situation and future prospects for beef production in South Korea - A review

  • Chung, Ki Yong;Lee, Seung Hwan;Cho, Soo Hyun;Kwon, Eung Gi;Lee, Jun Heon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.7
    • /
    • pp.951-960
    • /
    • 2018
  • Hanwoo cattle are an important food source in Korea and their supply can have a major impact on meat availability for Korean consumers. The Hanwoo population was 1.8 million head in 2005 and gradually increased to 2.6 million in 2015. Per capita beef consumption has also increased, to 11.6 kg per year in 2015, and is expected to continue to increase. Because intramuscular fat percentage is a critical contributor to meat quality, Hanwoo cattle are fed a high-energy corn-based diet for long fattening periods. Long fed diet causes significant alterations in fat percentage in the loin muscle and other areas of the carcass. However, these long feeding periods increase feeding costs and beef prices. Recently, there has been increased Korean consumer demand for lean beef which has less fat, but is tender and priced more reasonably. These consumer demands on the Korean beef industry are driving differing beef production systems and also changes to the beef grading methodology. Korean government has made a significant investment to select bulls with favorable production traits using progeny testing. Progeny tested bull semen has been disseminated to all Hanwoo farmers. A beef traceability system has been employed for all cattle breeds in Korea since 2009. Hanwoo cattle are ear-marked with a 12-digit identification number from birth to slaughter. This number allows traceability of the management history of individual cattle, and also provides information to consumers. Traceability including management information such as herd, farm, year of birth, and carcass data can determine estimated breeding values of Hanwoo. For a sustainable Hanwoo industry, research scientists in Korea have attempted to develop feeds for efficient fattening periods and precision feeding systems based on genetic information for Hanwoo cattle. These initiatives aim to Korean consumer demands for beef and provide more precision management in beef production in Korea.

Precision feeding and precision nutrition: a paradigm shift in broiler feed formulation?

  • Moss, Amy F.;Chrystal, Peter V.;Cadogan, David J.;Wilkinson, Stuart J.;Crowley, Tamsyn M.;Choct, Mingan
    • Animal Bioscience
    • /
    • v.34 no.3_spc
    • /
    • pp.354-362
    • /
    • 2021
  • Broiler chickens grow rapidly, and their nutrient requirements change daily. However, broilers are fed three to five diet phases, meaning nutrients are under or oversupplied throughout production. Increasing diet phases improves production efficiency as there is less time in the production cycle that nutrients are in under or over-supply. Nevertheless, the process of administering four or more diets is costly and often impractical. New technologies are now available to blend feed to match the daily nutrient requirements of broilers. Thus, the aim of this review is to evaluate previous studies measuring the impact of increasing feed phases on nutrient utilisation and growth performance, and review recent studies taking this concept to the extreme; precision nutrition - feeding a new diet for each day of the production cycle. This review will also discuss how modern precision feeding technologies have been utilised and the potential that new technologies may bring to the poultry industry. The development of a precision nutrition regime which targets daily requirements by blending dietary components on farm is anticipated to improve the efficiency of production, reduce production cost and therefore improve sustainability of the industry. There is also potential for precision feeding technology along with precision nutrition strategies to deliver a plethora of other management and economic benefits. These include increased fluidity to cope with sudden environmental or market changes, and the ability to alter diets on a farm by farm level in a large, integrated operation. Thus, the future possibilities and practical implications for such technologies to generate a paradigm shift in feed formulation within the poultry industry to meet the rising demand for animal protein is also discussed.

A Performance Analysis on a Heat pump with Thermal Storage Adopting Load Response Control Method (부하 대응 제어방식을 적용한 축열식 히트펌프시스템의 성능 해석)

  • Kim, Dong Jun;Kang, Byung Ha;Chang, Young Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.3
    • /
    • pp.130-142
    • /
    • 2018
  • We use heat pumps with thermal storage system to reduce peak usage of electric power during winters and summers. A heat pump stores thermal energy in a thermal storage tank during the night, to meet load requirements during the day. This system stabilizes the supply and demand of electric power; moreover by utilizing the inexpensive midnight electric power, thus making it cost effective. In this study, we propose a system wherein the thermal storage tank and heat pump are modeled using the TRNSYS, whereas the control simulations are performed by (i) conventional control methods (i.e., thermal storage priority method and heat pump priority method); (ii) region control method, which operates at the optimal part load ratio of the heat pump; (iii) load response control method, which minimizes operating cost responding to load; and (iv) dynamic programming method, which runs the system by following the minimum cost path. We observed that the electricity cost using the region control method, load response control approach, and dynamic programing method was lower compared to using conventional control techniques. According to the annual simulation results, the electricity cost utilizing the load response control method is 43% and 4.4% lower than those obtained by the conventional techniques. We can note that the result related to the power cost was similar to that obtained by the dynamic programming method based on the load prediction. We can, therefore, conclude that the load response control method turned out to be more advantageous when compared to the conventional techniques regarding power consumption and electricity costs.

Explainable AI Application for Machine Predictive Maintenance (설명 가능한 AI를 적용한 기계 예지 정비 방법)

  • Cheon, Kang Min;Yang, Jaekyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.227-233
    • /
    • 2021
  • Predictive maintenance has been one of important applications of data science technology that creates a predictive model by collecting numerous data related to management targeted equipment. It does not predict equipment failure with just one or two signs, but quantifies and models numerous symptoms and historical data of actual failure. Statistical methods were used a lot in the past as this predictive maintenance method, but recently, many machine learning-based methods have been proposed. Such proposed machine learning-based methods are preferable in that they show more accurate prediction performance. However, with the exception of some learning models such as decision tree-based models, it is very difficult to explicitly know the structure of learning models (Black-Box Model) and to explain to what extent certain attributes (features or variables) of the learning model affected the prediction results. To overcome this problem, a recently proposed study is an explainable artificial intelligence (AI). It is a methodology that makes it easy for users to understand and trust the results of machine learning-based learning models. In this paper, we propose an explainable AI method to further enhance the explanatory power of the existing learning model by targeting the previously proposedpredictive model [5] that learned data from a core facility (Hyper Compressor) of a domestic chemical plant that produces polyethylene. The ensemble prediction model, which is a black box model, wasconverted to a white box model using the Explainable AI. The proposed methodology explains the direction of control for the major features in the failure prediction results through the Explainable AI. Through this methodology, it is possible to flexibly replace the timing of maintenance of the machine and supply and demand of parts, and to improve the efficiency of the facility operation through proper pre-control.

Development of the Power Consumption Simulator and Classification of the Types of Household by Using Data Mining Over Smart Grid (스마트 그리드 환경에서 가정의 소비전력 생성 시뮬레이터 개발 및 데이터 마이닝 기법을 이용한 가족 유형 분류)

  • Kim, Ji-Hyun;Lee, Yun-Jin;Kim, Ho-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.1
    • /
    • pp.72-81
    • /
    • 2014
  • Recently, because of irregular power demand, we have suffered from an electric power shortage. The necessity of the adoption of smart grid which makes effective supply of power by using the two-way communication across the grid between the customers and electric energy providers is growing more and more. If smart grid set up in our country, the third-parties which provide services to customer using the information acquired from smart grid, might be revved up. In this paper, we suggest a methodology how classify the types of family by analysing an power consumption pattern using data mining technique. To make a classifier for categorizing the household types, we need power consumption data and their family type. However, it is hard to get both of them. Therefore we develop the simulator that generates power consumption patterns of the household and classify the types of family. Also, we present a potential for application services such as customized services for a specific family or goods marketing.

MXene Based Composite Membrane for Water Purification and Power Generation: A Review (정수 및 발전을 위한 맥신(MXene) 복합막에 관한 고찰)

  • Seohyun Kim;Rajkumar Patel
    • Membrane Journal
    • /
    • v.33 no.4
    • /
    • pp.181-190
    • /
    • 2023
  • Wastewater purification is one of the most important techniques for controlling environmental pollution and fulfilling the demand for freshwater supply. Various technologies, such as different types of distillations and reverse osmosis processes, need higher energy input. Capacitive deionization (CDI) is an alternative method in which power consumption is deficient and works on the supercapacitor principle. Research is going on to improve the electrode materials to improve the efficiency of the process. A reverse electrodialysis (RED) is the most commonly used desalination technology and osmotic power generator. Among many studies conducted to enhance the efficiency of RED, MXene, as an ion exchange membrane (IEM) and 2D nanofluidic channels in IEM, is rising as a promising way to improve the physical and electrochemical properties of RED. It is used alone and other polymeric materials are mixed with MXene to enhance the performance of the membrane further. The maximum desalination performances of MXene with preconditioning, Ti3C2Tx, Nafion, and hetero-structures were respectively measured, proving the potential of MXene for a promising material in the desalination industry. In terms of osmotic power generating via RED, adopting MXene as asymmetric nanofluidic ion channels in IEM significantly improved the maximum osmotic output power density, most of them surpassing the commercialization benchmark, 5 Wm-2. By connecting the number of unit cells, the output voltage reaches the point where it can directly power the electronic devices without any intermediate aid. The studies around MXene have significantly increased in recent years, yet there is more to be revealed about the application of MXene in the membrane and osmotic power-generating industry. This review discusses the electrodialysis process based on MXene composite membrane.