• Title/Summary/Keyword: energy space

Search Result 3,298, Processing Time 0.032 seconds

A Study on the Stability Analysis of Underground Mine using LIDAR (LIDAR를 활용한 지하광산의 안정성 분석에 관한 연구)

  • Lee, Seung-Joong;Kim, Byung-Ryeol;Jin, Yeon-Ho;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.27 no.6
    • /
    • pp.406-421
    • /
    • 2017
  • This study describes a precise numerical analysis process by adopting the real image of mine openings obtained by LIDAR, which can produce a point cloud data by measuring the target surface numerically. Research area is a section of underground limestone mine which is used hybrid room-and-pillar method for improving the production rate. From the application of LIDAR to this section several results were deduced, that is, the central axis of upper and lower vertical safety pillars is distorted to the direction of NW and the section area of lower vertical safety pillar is $34m^2$ smaller than the designed area of $100m^2$. The results of precise measurement in geometrical shape of mine openings and precise simulation in numerical analysis confirms that LIDAR techniques can be suggested as a valuable tool for stability analysis in underground mine by configuring the mine opening shape.

Respiratory air flow measuring technique without sensing element on the flow stream (호흡경로 상에 감지소자가 없는 새로운 호흡기류 계측기술)

  • Lee, In-Kwang;Park, Jun-Oh;Lee, Su-Ok;Shin, Eun-Young;Kim, Kyung-Chun;Kim, Kyung-Ah;Cha, Eun-Jong
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.294-300
    • /
    • 2009
  • Cardiopulmonary resuscitation(CPR) is performed by artificial ventilation and thoracic compression for the patient under emergent situation to maintain at least the minimum level of respiration and blood circulation for life survival. Quality of the pre-hospital CPR not only significantly affects the patient's survival rate but also minimizes side effects caused by CPR. Good quality CPR requires monitoring respiration, however, traditional respiratory air flow transducers cannot be used because the transducer elements are located on the flow axis. The present study developed a new technique with no physical object on the flow stream but enabling the air flow measurement and easily incorporated with the CPR devices. A turbulence chamber was formed in the middle of the respiratory tube by locally enlarging the cross-sectional area where the flow related turbulence was generated inducing energy loss which was in turn converted into pressure difference. The turbulence chamber was simply an empty enlarged air space, thus no physical object was placed on the flow stream, but still the flow rate could be evaluated. Both inspiratory and expiratory flows were obtained with symmetric measurement characteristics. Quadratic curve fitting provided excellent calibration formula with a correlation coefficient>0.999 (P<0.0001) and the mean relative error<1 %. The present results can be usefully applied to accurately monitor the air flow rate during CPR.

The Concept of Altitude of the Sun by difference of Spatial Ability of Elementary Student (초등학생의 공간능력에 따른 태양의 고도에 관한 개념)

  • Jeon, Man-Kuk;Kim, Hyoung-Bum;Jeong, Jin-Woo
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.6 no.1
    • /
    • pp.28-39
    • /
    • 2013
  • The purpose of this study is to investigate the conceptions about altitude of the Sun of elementary students according to differences by the spatial ability. In this study through the qualitative analysis, 4 students who were similar understanding levels of concepts to altitude of the Sun and differences by the spatial ability were selected out of 75 in 6th grade elementary located in Sunchang, Jellabuk-do Province. 4 students for the qualitative analysis were selected by the test instrument of spatial ability and altitude of the Sun. The results of study was students with higher spatial ability were higher understanding levels of concepts to altitude of the Sun. However, both of student with higher and lower spatial ability showed a false concept to the expanded concepts into outer space like a cause of seasonal change, change of altitude of the Sun by latitude unlike the intution. Students with lower spatial ability didn't form the scientific concepts, not only a cause of seasonal change and change of altitude of the Sun but also difference of energy density by altitude of the Sun. A student of two with lower spatial ability has been impediment strongly to form the scientific concept by the false concepts to the distance. The findings were as follows; Learning to altitude of the Sun regardless of the difference of spatial ability should be learned to interact to the intution, celestial movement and model experiment. To students with lower spatial ability should be developed teaching methods to understand the relation between the Sun and celestial movement.

Pt/$Ce_{(1-x)}Zr_{(x)}O_2$ catalyst optimization for water gas shift reaction (WGS 반응용 Pt/$Ce_{(1-x)}Zr_{(x)}O_2$ 촉매 최적화)

  • Jeong, Dae-Woon;Kim, Ki-Sun;Eum, Ic-Hwan;Lee, Sung-Hun;Koo, Kee-Young;Yoon, Wang-Lai;Roh, Hyun-Seog
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.213-216
    • /
    • 2009
  • WGS(Water Gas Shift)반응은 일산화탄소(CO)를 이산화탄소($CO_2$)로 전환하는 반응으로 일체형 수소생산시스템의 실현을 위한 고순도 수소생산에 있어서 중요한 단계이다. WGS 반응은 열역학적 평형을 고려하여 고온전이반응(HTS: High Temperature Shift)과 저온전이반응(LTS: Low Temperature Shift) 두 단계 반응으로 진행된다. 두 단계 공정의 통합을 위해 낮은 온도에서 높은 활성을 갖는 WGS 반응용 촉매 개발이 필요하다. 최근 낮은 온도에서 높은 활성을 갖는 귀금속 촉매에 다양한 담체를 적용시킨 연구가 활발히 진행되고 있다. 선행 연구 결과, Ce-$ZrO_2$ 구조는 Ce/Zr 비에 따라 다양한 특성 변화를 관찰하였다. 따라서 낮은 온도에서 높은 활성을 갖는 WGS 반응용 촉매 제조를 위해 환원성 담체인 $CeZrO_2$에 Pt 을 담지시켜 성능을 평가하였다. 제조된 모든 담체는 공침법(Co-precipitation)으로 제조 하였으며 $500^{\circ}C$에서 6시간 소성하였다. 제조된 담체에 백금(Pt)을 함침법(Incipient Wetness Impregnate)으로 담지시켰다. 특성분석은 BET를 이용하여 표면적을 측정하였다. 촉매 반응 실험조건은 $200^{\circ}C{\sim}400^{\circ}C$ 온도범위에서 기체공간속도(GHSV: Gas Hourly Space Velocity) 45,000 ml/$h{\cdot}g-cat$ 으로 혼합가스($H_2$:60%, $N_2$:20%,$CH_4$:1%,CO:9%,$CO_2$:10%)를 흘려 반응 후 배출되는 가스를 Micro-Gas Chromatography 를 이용하여 측정하였다.

  • PDF

Analysis of oscillatory responses of slug tests in a crystalline rock aquifer (암반대수층 내 순간충격시험 시 관찰된 요동반응의 해석)

  • Ryu, I.;Ji, S.H.;Koh, Y.
    • Tunnel and Underground Space
    • /
    • v.19 no.4
    • /
    • pp.348-354
    • /
    • 2009
  • Slug test is a common characterization method that estimates aquifer hydraulic conductivity rapidly and economically. To characterize the hydraulic property near the borehole YS-4 in the Korea Atomic Energy Research Institute (KAERI) site, slug tests were performed, and oscillatory hydraulic responses were observed. We analyzed the observations with the modified Hvorslev and Bouwer&Rice methods considering the casing inertia, and then the results were compared with those from the general Hvorslev and Bouwer&Rice methods. The estimated hydraulic conductivities from the modified methods are ranged from $4.85{\times}10^{-6}$ to $5.44{\times}10^{-6}$ m/sec, but those from the general ones are ranged from $3.10{\times}10^{-6}$ to $3.63{\times}10^{-5}$ m/s, which shows that the oscillatory responses should be analyzed with consideration of the flowing water inertia effect.

Fault Reactivation Modeling Using Coupled TOUGH2 and FLAC3D Interface Model: DECOVALEX-2019 Task B (TOUGH2-FLAC3D Interface 모델을 통한 단층 재활성 모델링: DECOVALEX-2019 Task B)

  • Park, Jung-Wook;Park, Eui-Seob;Lee, Changsoo
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.335-358
    • /
    • 2020
  • We present a numerical model to simulate coupled hydro-mechanical behavior of fault using TOUGH-FLAC simulator. This study aims to develop a numerical method to estimate fluid injection-induced fault reactivation in low permeability rock and to access the relevant hydro-mechanical stability in rock as part of DECOVALEX-2019 Task B. A coupled fluid flow and mechanical interface model to explicitly represent a fault was suggested and validated from the applications to benchmark simulations and the field experiment at Mont Terri underground laboratory in Switzerland. The pressure build-up, hydraulic aperture evolution, displacement, and stress responses matched those obtained at the site, which indicates the capability of the model to appropriately capture the hydro-mechanical processes in rock fault.

Li+-exchanged Zeolites X and Y (FAU) from Undried Formamide Solution

  • Kim, Hu Sik;Park, Jong Sam;Kim, Jeong Jin;Suh, Jeong Min;Lim, Woo Taik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.4
    • /
    • pp.260-269
    • /
    • 2013
  • Two single-crystals of fully dehydrated, partially $Li^+$-exchanged zeolites X (Si/Al = 1.09, crystal 1) and Y (Si/Al = 1.56, crystal 2), were prepared by flow method using 0.1 M $LiNO_3$ at 393 K for 48 h, respectively, followed by vacuum dehydration at 673 K and $1{\times}10^{-6}$ Torr. Their structures were determined by single-crystal X-ray diffraction techniques in the cubic space group $Fd\bar{3}$ and $Fd\bar{3}m$ at 100(1) K for crystals 1 and 2, respectively. They were refined to the final error indices $R_1/wR_2$ = 0.065/0.211 and 0.043/0.169 for crystals 1 and 2, respectively. In crystal 1, about 53 $Li^+$ ions per unit cell are found at three distinct positions; 9 at site I', 19 at another site I', and the remaining 25 at site II. The residual 25 $Na^+$ ions occupy three equipoints; 2 are at site I, 7 at site II, and 16 at site III'. In crystal 2, about 31 $Li^+$ ions per unit cell occupy sites I' and II with occupancies at 22 and 9, respectively; 3, 4, 23, and 3 $Na^+$ ions are found at sites I, I', II, and III', respectively. The extent of $Li^+$ ion exchange into zeolite X (crystal 1) is higher than that of zeolite Y (crystal 2), ca. 73% and 56% in crystals 1 and 2, respectively.

Optimal Design of an Auto-Leg System for Washing Machines (세탁기용 자동신통저감장치($Auto-Leg^{TM}$)의 최적 설계)

  • Seo, H.S.;Lee, T.H.;Jeon, S.M.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.996-1001
    • /
    • 2006
  • Automatic washing machines have been improved and popularized steadily since the first electric washing machine was produced in the early 1900's. Appliance industry has tried to obtain the performance of washing machine with large capacity, high energy efficiency, low vibration and low noise levels. As the installation peace of a washer becomes closer to the living space, vibration and noise problems become more important challenges. In general, a washing machine has four legs to support its body. Four legs of the washing machine should be attached on a floor. If not so, it may cause severe vibration or walking in the spin-drying process. Unfortunately, the floor of an ordinary house is bumpy in general, and the consumers will not accept bolting washing machines to a foundation; moreover, sometimes they move the location of their washing machines to utility rooms or bath rooms or kitchens and don't care for leveling the legs exactly. In this study, we devise an auto-leg system that prevents the occurrence of abnormal vibration and walking of washing machines. It is simply composed of a spring and a friction damper. Some experiments are implemented to show the dynamic characteristics of the three-dimensional auto-legged washing machine model that is located on the even or uneven ground. A spring parameter is optimized to adjust the length of the auto-leg system automatically up to 10 mm irregularity, and the friction damper is designed to decrease a resonance induced by the spring of the auto-leg system. Some numerical results show that placing the proposed auto-leg system in a washing machine makes good performance with low vibration, as well as low noise, regardless of the unevenness of the floor.

  • PDF

Development of Small HSSF Constructed Wetland for Urban Green space (도시내 녹지공간 조성을 위한 소규모 HSSF 인공습지 개발)

  • Lee, Jeong-Young;Kang, Chang-Guk;Gorme, Joan B.;Kim, Soon-Seok;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.13 no.2
    • /
    • pp.199-208
    • /
    • 2011
  • Scarcity of water worldwide, increasing greenhouse gas emissions, increased energy consumption due to the Earth is threatened. Existing in the process of urban planning and development of forests, rivers and other natural ecosystems have been destroyed and that there was increased impervious pavement. Impervious pavement increase water circulation system to destroy the natural and urban water retention, infiltration and decreased evaporation. Nonpoint source pollution(NPS) occurs when rainfall impervious pavement and appeal directly to the river water inflow is adversely impacts of the situation. In this study, rainfall occurs impervious pavement NPS pollution reduction and temperature increase due to the increase in urban areas, and to solve heat island phenomenon is to develop small HSSF constructed wetland technology. The small HSSF constructed wetland sedimentation, filtration, adsorption, absorption by vegetation, including such mechanisms. Techniques for verification of the pilot-scale test was conducted. In the future domestic urban heat island phenomenon and restore the natural water cycle for the facilities will be used as a basis to develop.

A Study on Assessment Indicators for Integrated Management on Korea National Planning and Environmental Planning (국토계획과 환경계획 통합관리 지표 개발 연구)

  • Heo, Han-Kyul;Sung, Hyun-Chan;Lee, Dong-Kun;Heo, Min-Ju;Park, Jin-Han
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.3
    • /
    • pp.27-45
    • /
    • 2018
  • Both the national land plan and the environmental plan reflect the need for sustainable land use and management. However, the linkage between the plans is reduced due to the lack of integrated management. Therefore, this study developed indicators to achieve integrated management. A total of 59 environmental plans were reviewed for the development of indicators, and a total of 74 integrated management indicators were derived through a three-stage process. In this process, the relevance of the integrated management indicators of this study to the UN 's sustainable development goals (SDGs) is presented in order to derive indicators that meet the level of international consultation. In order to facilitate the utilization of the indicators, the final indicators are divided into seven areas: natural ecology, water resource and quality, urban and green space, atmospheric, energy, landscape, resource circulation and waste. Furthermore, the indicators were classified into national, regional, and city level. Accordingly, the final indicator can be adapted to the field of influence of the planned to be established, and the indicator can be selected and applied to the level of the plan. The final indicators can be used to examine the extent to which the national plan reflects the contents of the environmental plan and can be used as an aid to confirm the contents to be included in the plan when establishing a new national plan.