• Title/Summary/Keyword: energy space

Search Result 3,298, Processing Time 0.03 seconds

Seismic response analysis of virtual honam-jeju subsea tunnel (지진시 가상 호남-제주 해저터널의 지반응답 특성)

  • Kwak, Chang-Won;Jang, Dong-In;Park, Inn-Joon;Park, Seong-Yong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.3
    • /
    • pp.319-329
    • /
    • 2016
  • Underground structures such as subsea tunnel having large section should be stable against seismic loads. In general, underground structures show more stable behavior due to the limited dynamic motion and force, and considerable energy dissipation; however, severe damage was reported from recent earthquakes. Therefore, more sophisticated and analytic approach is required to investigate the seismic response of underground structure like subsea tunnel. In this study, seismic analysis of virtual Honam-Jeju subsea tunnel are performed. Consequently, stresses and forces of tunnel lining increased at fractured and/or weak rock zones. Stresses and forces of tunnel lining also increased at large section under axially deformed condition; however, decrease under transversely deformed condition.

Tensile strength evaluation of SFRC subjected to high temperature using double punch test (DPT 실험을 이용한 고온노출된 강섬유보강콘크리트의 인장강도 평가)

  • Moon, Do-Young;Chang, Soo-Ho;Bae, Gyu-Jin;Lee, Gyu-Pil;Kim, Hee-Sung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 2013
  • Steel fiber-reinforced concrete (SFRC) is widely used for tunnel lining structure such as shot-crete in NATM tunnel and segment in TBM tunnel. In tunnel fire accidents, structural performance of a lining is very important because the lining is the structure that directly exposed to fire. In this study, the effects of high temperatures, mix ratios and types on failure pattern, DPT tensile strength and coefficient of variation were investigated through Double Punch Tests (DPT) of SFRC subjected to high temperatures. In the results, it is confirmed that the residual DPT tensile strength increases as for SFRC and this is more in SFRC with higher mix ratio. But, the equation for evaluation of DPT tensile strength does not involve the number of failure surfaces SFRC specimens subjected to high temperatures, therefore, it is required to investigate more fracture energy in DPT tests.

Performance analysis of sand abrasives for economical rock cutting using waterjet (경제적인 워터젯 암반절삭을 위한 모래 연마재 성능 분석)

  • Oh, Tae-Min;Park, Dong-Yeup;Kong, Tae-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.763-778
    • /
    • 2019
  • Abrasive waterjet cutting technology has been used for rock excavation of tunnels and underground structures due to various advantages. In order to cut rocks by using the abrasive waterjet system, abrasive is essential to enhance impact energies for fracturing the target rock. Since garnet abrasives are not produced in Korea, alternative abrasives, instead of garnets, are needed to achieve the economical waterjet cutting. This study is to analyze cutting performance for rocks with sandy particles as alternative abrasive. Cutting tests were carried out on granite specimens at the constant waterjet energy (e.g., water pressure or water flow rate). The five kinds of sands, sampled by construction fields and natural sites, were prepared to perform the experimental tests. When sea sand was used as an alternative abrasive, cutting performance was secured to be 60~70% compared to the commercial garnet abrasive. Thus, it is expected that sand abrasives can be applied on the waterjet cutting process for the economical excavation construction.

A study on the effects of changes in the estimating criteria for ventilation requirements in road tunnels (도로터널 소요환기량 산정기준 변화에 따른 영향 분석)

  • Kim, Hyo-Gyu;Lee, Chang-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.779-793
    • /
    • 2019
  • The ventilation rate (Qreq) requirement in road tunnels is not just a basic information for determining the tunnel cross-sectional area, but also a major factor for the ventilation system selection. The Qreq is predominantly dependent on the vehicle traffic volume, while among others, the vehicle exhaust emissions and permissible standards are critical. This paper analyzes the changes in the Qreq designing criteria and/or recommendations suggested by World Road Association and local authorities over the last 20 years, since the first local designing criteria was established in 1997 by Korea Expressway Corporation. Additionally, based on the updated vehicle emission standards of Ministry of Environment and recent recommendations of the World Road Association (WRA), changes in the Qreq and its effects are studied in terms of the length and grade of the tunnel.

Low Velocity Impact Monitoring for a Composite Sandwich Beam Using Piezo Thin Film Sensors (압전필름센서를 이용한 복합재 샌드위치 보의 저속충격 모니터링)

  • Park, Chan Ik;Lee, Gwan Ho;Kim, In Geol;Lee, Yeong Sin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.51-56
    • /
    • 2003
  • The piezoelectric thin film(PVDF: polyvinylidene fluoride) sensors having good dynamic sensing charachteristics can be used to monitor low vwlocit impact on composite structures. The impact response function for composite sandwich beam was derved. The impact tests at low energy without inducing damage were performed on the instrumented drop weight impact tester. The measured signals of PVDF sensors attached on the surface of the beam agreed well with the simulated signals. And the inverse technique was applied to reconstruct the impact forces from the PVDF sensor signals. Most of reconstructed impact forces showed good agreement with the measured forces. The comparison results showed that the piezoelectric thin film sensor can be used to monitor the low velocity impact on composite sandwich structures.

Frequency Response of Turbulent Flow to Momentum Forcing in a Channel with Wall Blowing (질량분사가 있는 채널 내부 난류 유동의 외부교란에 대한 주파수 특성)

  • Na, Yang;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.64-72
    • /
    • 2010
  • Due to the interaction between main oxidizer flow and the wall injected flow resulting from the regression process, a specific time characteristics identified in the frequency spectrum of streamwise velocity is generated in the hybrid rocket motor. In order to understand the response of the turbulent flow to two different types of external momentum forcing, LES analysis was conducted without considering the combustion. It turns out that both concentrated and distributed forcings do not lead to the disastrous resonance phenomenon. Energy contents are enhanced due to the added momentum but the peak frequency was not modified in the turbulent flow near the end of the rocket motor. Natural frequency of the flow system should be taken into account to further pursue the instability issue by using external forcing.

Conceptual Design of Electrical Power System using Li-ion Cell Technology for a Satellite (리튬이온 전지 기술을 채용한 인공위성용 전력계 개념 설계)

  • Shin, Goo-Hwan;Park, Kyung-Hwa;Kim, Hyung-Myung;Lim, Jong-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.115-123
    • /
    • 2007
  • This paper presents the conceptual design of the electrical power system using Li-ion cell technology for a satellite application. Compared to a conventional NiCd cell, a Li-ion cell has a lot of advantages such as an energy density, mass and a volume. Normally, a Li-ion cell has three times than conventional NiCd cells in a capacity such as a cell voltage. The normal voltage of a NiCd cell is around +1.2V and a Li-ion cell could be in +3.6V. However, the handling procedure for a Li-ion cell in charge and discharge might be difficult than a conventional NiCd cell, which means that the charge and discharge of each cell should be monitored and controlled by electrical circuits to prevent an over-charge and over-discharge. Therefore, in this paper we propose the design consideration and the characteristics of a Li-ion cell during charging and discharging battery packs in the point of view of electrical power system.

Development of a new free wake model using finite vortex element for a horizontal axis wind turbine

  • Shin, Hyungki;Park, Jiwoong;Lee, Soogab
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.17-27
    • /
    • 2017
  • The treatment of rotor wake has been a critical issue in the field of the rotor aerodynamics. This paper presents a new free wake model for the unsteady analysis for a wind turbine. A blade-wake-tower interaction is major source of unsteady aerodynamic loading and noise on the wind turbine. However, this interaction can not be considered in conventional free wake model. Thus, the free wake model named Finite Vortex Element (FVE hereafter) was devised in order to consider the interaction effects. In this new free wake model, the wake-tower interaction was described by dividing one vortex filament into two vortex filaments, when the vortex filament collided with a tower. Each divided vortex filaments were remodeled to make vortex ring and horseshoe vortex to satisfy Kelvin's circulation theorem and Helmholtz's vortex theorem. This model was then used to predict aerodynamic load and wake geometry for the horizontal axis wind turbine. The results of the FVE model were compared with those of the conventional free wake model and the experimental results of SNU wind tunnel test and NREL wind tunnel test under various inflow velocity and yaw condition. The result of the FVE model showed better correlation with experimental data. It was certain that the tower interaction has a strong effect on the unsteady aerodynamic load of blades. Thus, the tower interaction needs to be taken into account for the unsteady load prediction. As a result, this research shows a potential of the FVE for an efficient and versatile numerical tool for unsteady loading analysis of a wind turbine.

3D Numerical Simulation of Ice Accretion on a Rotating Surface

  • Mu, Zuodong;Lin, Guiping;Bai, Lizhan;Shen, Xiaobin;Bu, Xueqin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.352-364
    • /
    • 2017
  • A novel 3D mathematical model for water film runback and icing on a rotating surface is established in this work, where both inertial forces caused by the rotation and shear forces due to the air flow are taken into account. The mathematical model of the water film runback and energy conservation of phase transition process is established, with a cyclical average method applied to simulate the unsteady parameters variation at angles of attack. Ice accretion on a conical spinner surface is simulated and the results are compared with the experimental data to validate the presented model. Then Ice accretion on a cowling surface is numerically investigated. Results show that a higher temperature would correspond to a larger runback ice area and thinner ice layer for glaze ice. Rotation would enhance the icing process, while it would not significantly affect the droplet collection efficiency for an axi-symmetric surface. In the case at angle of attack, the effect of rotation on ice shape is appreciable, ice would present a symmetric shape, while in a stationary case the shape is asymmetric.

THE ATTITUDE STABILITY ANALYSIS OF A RIGID BODY WITH MULTI-ELASTIC APPENDAGES AND MULTI-LIQUID-FILLED CAVITIES USING THE CHETAEV METHOD

  • Kuang, Jin-Lu;Kim, Byung-Jin;Lee, Hyun-Woo;Sung, Dan-Keun
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.209-220
    • /
    • 1998
  • The stability problem of steady motion of a rigid body with multi-elastic appendages and multi-liquid-filled cavities, in the presence of no external forces or torque, is considered in this paper. The flexible appendages are modeled as the clamped -free-free-free rectangular plates, or/and as the discrete mass- spring sub-system. The motion of liquid in every single ellipsoidal cavity is modeled as the uniform vortex motion with a finite number of degrees of freedom. Assuming that stationary holonomic constraints imposed on the body allow its rotation about a spatially fixed axis, the equation of motion for such a systematic configuration can be very complex. It consists of a set of ordinary differential equations for the motion of the rigid body, the uniform rotation of the contained liquids, the motion of discrete elastic parts, and a set of partial differential equations for the elastic appendages supplemented by appropriate initial and boundary conditions. In addition, for such a hybrid system, under suitable assumptions, their equations of motion have four types of first integrals, i.e., energy and area, Helmholtz' constancy of liquid - vortexes, and the constant of the Poisson equation of motion. Chetaev's effective method for constructing Liapunov functions in the form of a set of first integrals of the equations of the perturbed motion is employed to investigate the sufficient stability conditions of steady motions of the complete system in the sense of Liapunov, i.e., with respect to the variables determining the motion of the solid body and to some quantities which define integrally the motion of flexible appendages. These sufficient conditions take into account the vortexes of the contained liquids, the vibration of the flexible components, and coupling among the liquid-elasticity solid.

  • PDF