• Title/Summary/Keyword: energy space

Search Result 3,298, Processing Time 0.033 seconds

Cosmic Evolution of Submillimeter Galaxies and Their Effects on the Star Formation Rate Density

  • Kim, Sungeun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.27-27
    • /
    • 2013
  • Development of bolometer array and camera at millimeter and submillimeter wavelengths plays an important role for detecting submillimeter galaxies (SMGs) which appear to be very bright at the submillimeter and millimeter wavelengths. These SMGs, luminous infrared galaxies detected at mm/submm wavelengths seem to be progenitors of present-day massive galaxies and account for their considerable contributions to the light from the early universe and their expected high star formation rates (SFRs) if there is a close link between the SMG phenomena and the star formation activities and the interstellar dust in galaxies is mainly heated by the star light. In this talk, we review assembly of SMGs compiled with observations using the bolometer arrays and cameras and investigate their spectral energy distribution fits including the data at other wavelengths which trace the photometric properties and the red-shift distribution of galaxies. We find that these bright SMGs significantly contribute to the cosmic star formation rate density at red-shifts of 2-3 (about 8 %) for the spatial distribution of these galaxies.

  • PDF

A Study on Radiation-Shielded Electronics Technology Survey (우주방사선차폐 전자공학기술조사 연구)

  • Hwang, Sun-Tae;Hah, Suck-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.1
    • /
    • pp.45-49
    • /
    • 2001
  • 오늘 날 인공위성을 이용하는 통신, 방송, 기상, 환경모니터링 및 원격탐사 등이 각광을 받고 있는 때에 위성에 설치되는 수많은 전자제품 및 부품들의 우주방사선에 대한 내구성이 매우 중요한 문제로 제기되고 있다. 이러한 관점에서 국내에서는 아직 확보할 수 없는 우주방사선차폐 전자공학기술에 관한 정보자료를 조사 수집하여 기술적으로 직접 활용해야할 필요성이 시급하게 대두되고 있다. 따라서 선진국에서 개발된 우주방사선차폐를 위한 첨단전자공학기술에 관한 기술정보 자료를 체계적으로 서술한다.

  • PDF

EEG Data Compression Using the Feature of Wavelet Packet Coefficients (웨이블릿 패킷 분해를 이용한 EEG 신호압축)

  • Cho, Hyun-Sook;Lee, Hyoung;Hwang, Sun-Tae
    • Journal of Information Technology Applications and Management
    • /
    • v.10 no.4
    • /
    • pp.159-168
    • /
    • 2003
  • This paper is concerned with the compression of EEG signals using wavelet-packet based techniques. EEG data compression is desirable for a number of reasons. Primarily it decreases for transmission time, archival storage space, and in portable systems, it decreases memory requirements or increases channels and bandwidth. Upon wavelet decomposition, inherent redundancies in the signal can be removed through thresholding to achieve data compression. We proposed the energy cumulative function for deciding of the threshold value and it works very innovative of EEG data.

  • PDF

Analysis and Performance Test of Hybrid Transformer used in the Grid-Connected Photovoltaic Generation System (태양광 계통연계형 하이브리드 변압기의 해석 및 성능시험)

  • Kim, Ji-Ho;Park, Hoon-Yang;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.333-338
    • /
    • 2014
  • This paper concerns the development of the transformer that can reduce harmonics supplied to the system if the output of photovoltaic inverter in the photovoltaic system is grid-connected, and suggests that problems of harmonics and power factor degradation in the grid-connected photovoltaic system can be improved. In this study, the burden of increasing the investment in new facilities and securing their installation space due to harmonics has been substantially eased through the development of a hybrid transformer possessing unbalanced function and harmonics reduction function using zig-zag coils, and most of all, it is expected that the development of such high efficiency hybrid transformer possessing functions of transformation and reducing harmonics can improve the power quality as well as prevent damages caused by harmonics, leading to suppress unnecessary loss of electric power and thereby contribute to energy savings.

Adaptive Classification of Subimages by the Fuzzy System for Image Data Compression (퍼지시스템에 의한 부영상의 적응분류와 영상데이타 압축에의 적용)

  • Kong, Seong-Gon
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.7
    • /
    • pp.1193-1205
    • /
    • 1994
  • This paper presents a fuzzy system that adaptively classifies subimages to four classes according to image activity distribution. In adaptive transform image coding, subimage classification improves the compression performance by assigning different bit maps to different classes. A conventional classification method sorts subimages by their AC energy and divides them to classes with equal number of subimages. The fuzzy system provides more flexible classification to natural images with various distribution of image details than does the conventional method. Clustering of training data in the input-output product space generated the fuzzy rules for subimage classification. The fuzzy system of small number of fuzzy rules successfully classified subimages to improve the compression performance of the transform image coding without sorting of AC energies.

The development of computational fluid dynamics tools for thermal expansion type interrupter with the arc rotary (아크회전과 열팽창 방식을 적용한 소호부에 대한 아크유동 해석)

  • Choulkov, Victor;Lee, B.W.;Seo, J.M.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.813-815
    • /
    • 2000
  • This paper is concerned with the development of PC based computer simulation and design tools for auto-expansion SF6 circuit breaker with the arc rotary. The simulation model takes into account radiation transport, turbulence enhanced momentum. energy transport. The conversation gas dynamic equation together with Maxwells equations are solved. For the arc simulation the straightforward procedure has been used. The temperature, gas density and velocity space distributions within the circuit breaker are simulated in details. The presented results show that the computer simulation of gas flow in SF6 interrupter is a subject of much interest for design and optimization of contacts. The presented results show that the shape and sizes of contacts are chosen by this tool from judiciously compromise between electrical breakdown strength and interruption ability that are functions of gas flow parameters.

  • PDF

Wave propagation in a two-temperature fiber-reinforced magneto-thermoelastic medium with three-phase-lag model

  • Said, Samia M.;Othman, Mohamed I.A.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.2
    • /
    • pp.201-220
    • /
    • 2016
  • A general model of equations of the two-temperature theory of generalized thermoelasticity is applied to study the wave propagation in a fiber-reinforced magneto-thermoelastic medium in the context of the three-phase-lag model and Green-Naghdi theory without energy dissipation. The material is a homogeneous isotropic elastic half-space. The exact expression of the displacement components, force stresses, thermodynamic temperature and conductive temperature is obtained by using normal mode analysis. The variations of the considered variables with the horizontal distance are illustrated graphically. Comparisons are made with the results of the two theories in the absence and presence of a magnetic field as well as a two-temperature parameter. A comparison is also made between the results of the two theories in the absence and presence of reinforcement.

Reflection and refraction of plane waves in layered nonlocal elastic and anisotropic thermoelastic medium

  • Lata, Parveen
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.113-124
    • /
    • 2018
  • In the present paper, we have considered a layered medium of two semi-infinite nonlocal elastic solids with intermediate transversely isotropic magnetothermoelastic solid. The intermediate slab is of uniform thickness with the effects of two temperature, rotation and Hall current and with and without energy dissipation. A plane longitudinal or transverse wave propagating through one of the nonlocal elastic solid half spaces, is made incident upon transversely isotropic slab and it results into various reflected and refracted waves. The amplitude ratios of various reflected and refracted waves are obtained by using appropriate boundary conditions. The effect of nonlocal parameter on the variation of various amplitude ratios with angle of incidence are depicted graphically. Some cases of interest are also deduced.

Noise Reduction Characteristics of a High-performance Air-gap Resonator (고효율 에어갭 공명기의 소음 저감 특성)

  • Kang, Sang-Wook;Lee, Jang-Moo;Lim, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.2
    • /
    • pp.118-124
    • /
    • 2004
  • The objective of the paper is to demonstrate the noise reduction characteristics of an air-gap resonator, which is composed of an air gap and a partition sheet. By means of installing the air-gap resonator in an enclosed cavity, acoustic resonance can be effectively suppressed using a small space. In particular, it is revealed from a simple, one-dimensional model that the air-gap resonator serves as the Helmholtz resonator that generally absorbs acoustic resonance energy at its resonance frequency. As a result, the air-8ap resonator also has a resonance frequency, which can be predicted with a simple frequency equation derived in the paper. Finally, verification experiments show that the air-gap resonator can be effectively designed by predicting a reasonable gap thickness using the simple frequency-equation.

Performance Evaluation of Components of Micro Solid Propellant Thruster (마이크로 고체 추진제 추력기 요소의 성능 평가)

  • Lee, Jong-Kwang;Lee, Dae-Hoon;Kwon, Se-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1280-1285
    • /
    • 2004
  • Microsystem technology has been applied to space technology and became one of the enabling technology by which low cost and high efficiency are achievable. Micro propulsion system is a key technology in the miniature satellite because micro satellite requires very small and precise thrust force for maneuvering and attitude control. In this paper research on micro solid propellant thruster is reported. Micro solid propellant thruster has four basic components; micro combustion chamber, micro nozzle, solid propellant and micro igniter. In this research igniter, solid propellant and combustion chamber are focused. Micro igniter was fabricated through typical micromachining and evaluated. The characteristic of solid propellant was investigated to observe burning characteristic and to obtain burning velocity. Change of thrust force and the amount of energy loss following scale down at micro combustion chamber were estimated by numerical simulation based on empirical data and through the calculation normalized specific impulses were compared to figure out the efficiency of combustion chamber.

  • PDF