• Title/Summary/Keyword: energy space

Search Result 3,298, Processing Time 0.028 seconds

Hydrophobic Surface Treatment with Anisotropic Characteristics Using Laser Selective Deposition (레이저 선택적 증착을 통한 이방특성의 소수성 표면처리)

  • Kim, Ji-Hun;Kwon, Ye-Ji;Yang, Hoon-Seok;Kim, Joohan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.109-115
    • /
    • 2020
  • Surfaces with various roughnesses were produced through laser processing, and the anisotropy and hydrophobicity of the surfaces were examined in the context of the microstructures. The fine particles transferred to the glass surface exhibited different sizes, and the roughness increased. Due to the change in the roughness, the liquid could not penetrate the space between the fine particles, and it was thus exposed to the air. We analyzed this phenomenon using the combined Wenzel and Cassie-Baxter models. Excessive fine particle formation on the substrate tended to increase the roughness and surface energy. The silver-glass-air contact analysis could clarify the mechanism of the reduction of the contact angle and differences in the metastable and stable states when the particles did not completely cover the glass substrate. The formation of microstructures with fine particles through the laser selective deposition led to the generation of an anisotropic surface as the water droplets diffused toward the glass substrate with a relatively high surface energy level.

Contribution Assessment of Roadheader Performance Indexes by Analysis of Variance (분산분석을 이용한 로드헤더 절삭시험 입출력 인자 간의 기여도 조사)

  • Mun-Gyu, Kim;Chang-Heon, Song;Joo-Young, Oh;Jung-Woo, Cho
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.386-396
    • /
    • 2022
  • To analyze the influence of variables of roadheaders, the linear cutting testing data of pick cutter were collected from the former literatures. The input factors were set up as uniaxial compressive strength, cutting depth, cutting spacing, attack angle, skew angle, and output factors were determined as specific energy, average cutting force, maximum cutting force, average vertical force, and maximum vertical force. After composing a table of the design of experiment (DOE). The contribution level of each factor was calculated by analysis of variance (ANOVA). As a result, the factors having greatest influence on cutting force and specific energy were uniaxial compressive strength and cutting spacing.

Regional Carbon Emissions Analysis in Settlement and Production Space for Local Government Polices - Focused on Gyeongsangnam Province - (지역의 탄소중립 전략을 위한 정주 및 생산공간에서의 탄소배출 특성 분석 -경상남도 지역을 대상으로-)

  • Lee, Jimin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.3
    • /
    • pp.1-13
    • /
    • 2023
  • Local governments play a critical role in achieving carbon neutrality and reducing national carbon emissions. To manage carbon emissions effectively, it is essential for local governments to analyze regional carbon emissions. In this study, we developed a model for estimating carbon emissions based on land use and analyzed regional characteristics of carbon emissions to suggest policies for achieving carbon neutrality at the regional level. Our model for calculating carbon emissions is based on an analysis of the activities that contribute to carbon emissions for each land use, and we established the spatial scope of carbon emission calculation. We applied this model to the cities and counties in Gyeongsangnam province, calculating carbon emissions from settlement and agricultural production activities and comparing regional characteristics of carbon emissions. Our analysis showed that areas with larger populations generally produced higher emissions in all categories, but we observed different results in terms of unit emissions, emissions divided by area, population, and household. Based on these findings, we propose policies such as increasing the generation of new and renewable energy using public institutions, promoting the conversion to cleaner cooking and heating energy sources, and encouraging the adoption of eco-friendly automobiles on roads. We believe that our analysis of the spatial and regional characteristics of carbon emissions can help local governments establish effective policies for reducing carbon emissions in their regions.

The influence of air gaps on buffer temperature within an engineered barrier system

  • Seok Yoon;Gi-Jun Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4120-4124
    • /
    • 2023
  • High-level radioactive waste produced by nuclear power plants are disposed subterraneously utilizing an engineered barrier system (EBS). A gap inevitably exists between the disposal canisters and buffer materials, which may have a negative effect on the thermal transfer and water-blocking efficiency of the system. As few previous experimental works have quantified this effect, this study aimed to create an experimental model for investigating differences in the temperature changes of bentonite buffer in the presence and absence of air gaps between it and a surrounding stainless steel cell. Three test scenarios comprised an empty cell and cells partially or completely filled with bentonite. The temperature was measured inside the buffers and on the inner surface of their surrounding cells, which were artificially heated. The time required for the entire system to reach 100℃ was approximately 40% faster with no gap between the inner cell surface and the bentonite. This suggests that rock-buffer spaces should be filled in practice to ensure the rapid dissipation of heat from the buffer materials to their surroundings. However, it can be advantageous to retain buffer-canister gaps to lower the peak buffer temperature.

Design and transient analysis of a compact and long-term-operable passive residual heat removal system

  • Wooseong Park;Yong Hwan Yoo;Kyung Jun Kang;Yong Hoon Jeong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4335-4349
    • /
    • 2023
  • Nuclear marine propulsion has been emerging as a next generation carbon-free power source, for which proper passive residual heat removal systems (PRHRSs) are needed for long-term safety. In particular, the characteristics of unlimited operation time and compact design are crucial in maritime applications due to the difficulties of safety aids and limited space. Accordingly, a compact and long-term-operable PRHRS has been proposed with the key design concept of using both air cooling and seawater cooling in tandem. To confirm its feasibility, this study conducted system design and a transient analysis in an accident scenario. Design results indicate that seawater cooling can considerably reduce the overall system size, and thus the compact and long-term-operable PRHRS can be realized. Regarding the transient analysis, the Multi-dimensional Analysis of Reactor Safety (MARS-KS) code was used to analyze the system behavior under a station blackout condition. Results show that the proposed design can satisfy the design requirements with a sufficient margin: the coolant temperature reached the safe shutdown condition within 36 h, and the maximum cooling rate did not exceed 40 ℃/h. Lastly, it was assessed that both air cooling and seawater cooling are necessary for achieving long-term operation and compact design.

Effect of Ignition Location on a Vented Deflagration of Hydrogen-air Mixtures in Semi-confined Space (반밀폐공간 내 점화원의 위치가 수소-공기 혼합물 벤트폭연에 미치는 영향)

  • UNGGI YOON;BYOUNGJIK PARK;INJU HWANG;WOOKYUNG KIM;YANGKYUNG KIM
    • Journal of Hydrogen and New Energy
    • /
    • v.35 no.4
    • /
    • pp.415-427
    • /
    • 2024
  • Explosion experiments were conducted using a rectangular concrete structure filled with hydrogen-air mixture (29.0%). In addition, the effect of ignition location on explosion was investigated. The impact on overpressure and flame was increased with the increasing distance of the ignition source from the vent. Importantly, depending on the ignition location the incident pressure was up to 24.4 times higher, while the reflected pressure was 8.7 times higher. Additionally, a maximum external overpressure of 30.01 kPa was measured at a distance of 2.4 m from the vent, predicting damage to humans at the injury level (1% fatality probability). Whereas, no significant damage would occur at a distance of 7.4 m or more from the vent.

Performance Improvement of a Darrieus Hydrokinetic Turbine by Interaction and Diffusion Effects (상호작용과 확산 효과를 이용한 다리우스 유체동력 터빈의 성능 향상)

  • Dasom Jeong;Jin-Soon Park;Jin Hwan Ko
    • Ocean and Polar Research
    • /
    • v.46 no.1
    • /
    • pp.83-92
    • /
    • 2024
  • In this study, first, we adopted a twin configuration of a Darrieus hydrokinetic turbines that can bring about an improvement in efficiency through positive interaction and obtained the optimal shape through parametric analysis of the small-scale turbine model by computational fluid dynamic simulations. Next, the effect of performance improvement was examined for symmetrical and asymmetrical ducts. The results show that the asymmetrical duct that utilizes diffusion effects has a comparative advantage in terms of efficiency and drag over the symmetrical one. However, the advantage of the Darrieus turbine, which has flow-directional independency, is lost in the case of the presented configuration; thus, we introduced the idea of a passive yaw-controller that adapts to the variation of the flow-direction that does not require additional energy consumption. In conclusion, such efforts and adjustments to enhance the performance of the Darrieus turbine by utilizing the interaction and diffusion effects discussed in this study will be helpful in securing competitiveness against other types of hydrokinetic turbines.

Ecological Role of Urban Stream and Its Improvement (도시하천의 생태학적 역할과 개선방안)

  • Son, Myoung-Won
    • Journal of the Korean association of regional geographers
    • /
    • v.4 no.1
    • /
    • pp.15-25
    • /
    • 1998
  • A stream plays an important role as the source of drinking water, the ecological space and the living space. But the today's urban stream whose ecosystem is destroyed and water quality become worse in consequence of covering, concrete dyke construction, and the adjustment of high-water-ground[dunchi], is deprived of the function as a stream. Therefore this paper aims to elucidate the role that urban stream plays ecologically and to try to find a improvement to the problem. A stream is the pathway through which several types of the solar radiation energy are transmitted and the place which is always full of life energy. In the periphery of a stream, primary productivity is high and carrying capacity of population is great. Thus ancient cities based on agricultural products grew out of the fertile surroundings of stream. In Korea most cities of the Chosen Dynasty Period based on the agriculture have grown out of the erosional basins where solar energy is concentrated. The role of a stream in this agricultural system is the source of energy and material(water and sediment) and a lifeline. In consequence of the growth of cities and the rapid growing demands of water supply after the Industrial Revolution, a stream has become a more important locational factor of city. However, because cities need the life energy of urban streams no longer, urban streams cannot play role as a lifeline. And As pollutant waste water has poured into urban streams after using external streams' water, urban streams have degraded to the status of a ditch. As the results of the progress of urbanization, the dangerousness of inundation of urban stream increased and its water quality became worse. For the sake of holding back it, local governments constructed concrete dyke, adjusted high-water-ground[dunchi], and covered the channel. But stream ecosystem went to ruin and its water quality became much worse after channelization. These problems of urban stream can be solved by transmitting much energy contained in stream to land ecosystem as like rural stream. We should dissipate most of the energy contained in urban stream by cultivating wetland vegetation from the shore of stream to high-water-ground, and should recover a primitive natural vigorous power by preparation of ecological park.

  • PDF

Feasibility Assessment on the Application of X-ray Computed Tomography on the Characterization of Bentonite under Hydration (벤토나이트 수화반응 특성화를 위한 X선 단층촬영 기술 적용성 평가)

  • Melvin B., Diaz;Gyung Won, Lee;Seohyeon, Yun;Kwang Yeom, Kim;Chang-soo, Lee;Minseop, Kim;Jin-Seop, Kim
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.491-501
    • /
    • 2022
  • Bentonite has been proposed as a buffer and backfill material for high-level radioactive waste repository. Under such repository environment conditions, bentonite is subjected to combined thermal, hydrological, mechanical, and chemical processes. This study evaluates the feasibility of applying X-ray CT technology on the characterization of bentonite under hydration conditions using a newly developed testing cell. The cylindrical cell is made of platic material, with a removable cap to place the sample, enabling to apply vertical pressure on the sample and to measure swelling pressure. The hydration test was carried out with a sample made of Gyeonju bentonite, with a dry density of 1.4 g/cm3, and a water content of 20%. The sample had a diameter of 27.5 mm and a height of 34 mm. During the test, water was injected at a constant pressure of 0.207 MPa, and lasted for 7 days. After one day of hydration, bentonite swelled and filled out the space inside the cell. Moreover, CT histograms showed how the hydration process induced an initial increase and later progressive decrease on the density of the sample. Detailed profiles of the mean CT value, CT standard deviation, and CT gradient provided more details on the hydration process of the sample and showed how the bottom and top regions exhibited a decrease on density while the middle region showed an increase, especially during the first two days of hydration. Later, the differences in CT values with respect to the initial state decreased, and were small at the end of testing. The formation and later reduction of cracks was also characterized through CT scanning.

Characteristics of Ondol Heating Load for the Determination of Heat Pump Power (열펌프 시스템의 규모 결정을 위한 온돌난방부하 특성)

  • 노정근;백은기;송현갑
    • Journal of Biosystems Engineering
    • /
    • v.28 no.3
    • /
    • pp.217-224
    • /
    • 2003
  • To find out heating load and to determine the power of heat pump compressor for the Ondol room heating the COP of heat pump, the variation of Ondol room air temperature, the variation of ambient temperature and power consumption of heat pump are analyzed. The results from this study were summarized as follows: 1. The COP of the heat pump in close loop decreased as the ambient air temperature. The COP was 2.26 when the temperature difference of condenser was $20\pm3^{\circ}C$. 2. The Ondol surface temperature was $25\pm3^{\circ}C$ when the hot water of $40^{\circ}C$ was supplied from hot water storage tank to the Ondol and the temperature difference between the Ondol surface and the room air temperature was $7~8^{\circ}C$. 3. The ratio of thermal conduction heating load to total heating load in Ondol heating space was found to be 83% and ratio of ventilation heating load was 17%. Therefore, the thermal conduction heating load was confirmod to be a major heating load in Ondol heating space. 4. In case of the ambient temperature of $3.2^{\circ}C$, the efficiency of heat exchange of Ondol heating system was 85%. 5. The heating load per Ondol heating surface area and volume of Ondol room space were theoretically analyzed. In case of the room temperature of $20^{\circ}C$ and the ambient temperature of $-3.2~3.8^{\circ}C$, the heating load per Ondol surface area was 115.8~167.6kJ/h ㆍ㎥ and per Ondol mom space volume was 50.2~72.7kJ/h ㆍ㎥. 6. The compressor power of heat pump fur the Ondol room heating could be determined with the heating load analyzed in this study In case of the Ondol room air temperature of 17~2$0^{\circ}C$ and the ambient temperature of -5~3.8$^{\circ}C$, the compressor power of heat pump per Ondol surface area was analyzed to be $2.3\times10^{-2}psm^2$, and per volume of Ondol room space $1.0\times10^{-2}1.4\times10^{-2}ps/m^2$ps.