• Title/Summary/Keyword: energy space

Search Result 3,298, Processing Time 0.025 seconds

Heat Transfer Augmenttaion by use of Wire Mesh-Screens in Impinging Water Jet (와이어 망을 이용한 충돌 수분류의 열전달 증진)

  • Yun, S.H.;Lee, J.S.;Choi, G.G.
    • Solar Energy
    • /
    • v.19 no.3
    • /
    • pp.43-51
    • /
    • 1999
  • Axisymmetric circular water jet impinges against rectangular heated surface with uniform hear flux and wire-mesh screens are set up in the nozzle-to-heater space to augment heat transfer. In the free jet region to be used them, pressure drop and intensive turbulence flow was brought up. When water jet system is not used wire-mesh screens, maximum heat transfer appears in the stagnation point and the secondary maximum appears X/D=4 but it disappears when they are is used. In the low velocity(Vo<6.0m/s), coarse mesh-screen enhanced heat transfer but fine mesh-screens inpeded heat transfer. In the high velocity(Vo>6m/s), all of them enhanced heat transfer. Average Nusselt number of experimental system to be used wire-mesh screens was promoted $4{\sim}6$times than that of simple water jet system. The stagnation heat transfer of experimental system to be used wire-mesh screens was augmented 6times that of simple water jet system.

  • PDF

Prediction of Stratification Model for Diffusers in Underfloor Air Distribution System using the CFD (CFD를 활용한 바닥공조시스템 디퓨저의 성층화 모델 예측)

  • Son, Jeong-Eun;Yu, Byeong-Ho;Pang, Seung-Ki;Lee, Kwang Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.3
    • /
    • pp.105-110
    • /
    • 2017
  • Underfloor air distribution (UFAD) is an air distribution strategy for providing ventilation and space conditioning in buildings. UFAD systems use the underfloor plenum beneath a raised access floor to provide conditioned air through floor diffusers that create a vertical thermal stratification during cooling operations. Thermal stratification has significant effects on energy, indoor air quality, and thermal comfort performance. The purpose of this study was to characterize the influence of a linear bar grille diffuser on thermal stratification in both interior and perimeter zones by developing Gamma-Phi based prediction models. Forty-eight simulations were carried out using a Computational Fluid Dynamics (CFD) technique. The number of diffusers, the air flow supply, internal heat gains, and solar radiations varied among the different cases. Models to predict temperature stratification for the tested linear bar grille diffuser have been developed, which can be directly implemented into dynamic whole-building simulation software such as EnergyPlus.

Mass Transport of Soluble Species Through Backfill into Surrounding Rock (용해도가 큰 핵종의 충전물질에서 주변 암반으로의 이동 현상)

  • Kang, Chul-Hyung;Park, Hun-Hwee
    • Nuclear Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.228-235
    • /
    • 1992
  • Some soluble species may not be solubility-limited or congruent-released with the matrix species. For example, during the operation of the nuclear reactor, the fission products can be accumulated in the fuel-cladding gap, voids, and grain boundaries of the fuel rods. In the waste package for spent-fuel placed in a geologic repository, the high solubility species of these fission products accumulated in the“gap”, e.g. cesium or iodine are expected to dissolve rapidly when ground water penetrates fuel rods. The time and space dependent mass transport for high solubility nuclides in the gap is analyzed, and its numerical illustrations are demonstrated. The approximate solution that is valid for all times is developed, and validated by comparison with an asymptotic solution and the solution obtained by the numerical inversion of Laplace transform covering the entire time span.

  • PDF

Acceleration of Relativstic Jets on Sub-parsec Scales

  • Lee, Sang-Sung;Lobanov, Andrei;Krichbaum, Thomas P.;Zensus, J. Anton
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.37.1-37.1
    • /
    • 2016
  • Jets of compact radio sources are highly relativistic and Doppler boosted, making studies of their intrinsic properties difficult. Observed brightness temperatures can be used to study the intrinsic physical properties of the relativistic jets. The intrinsic properties of relativistic jets depend on inner jet models. We aimed to observationally test the inner jet models. The very long baseline interferometry (VLBI) cores of compact radio sources are optically thick at a given frequency. The distance of the core from the central engine is inversely proportional to the frequency. Under the equipartition condition between the magnetic field energy and particle energy densities, the absolute distance of the VLBI core can be predicted. We compiled the brightness temperatures of VLBI cores at various radio frequencies of 2, 8, 15, and 86~GHz. The brightness temperatures in the rest frame were investigated in the sub-parsec regions of the compact radio sources. From the vicinity of the central engine, the brightness temperatures increased slowly and then rose with steeper slope, indicating that the Lorentz factor increases along the jet. This implies that the jets are accelerated in the (sub-)parsec regions from the central engine.

  • PDF

Synthesis, Structure, and Magnetic Properties of 1D Nickel Coordination Polymer Ni(en)(ox)·2H2O (en = ethylenediamine; ox = oxalate)

  • Chun, Ji-Eun;Lee, Yu-Mi;Pyo, Seung-Moon;Im, Chan;Kim, Seung-Joo;Yun, Ho-Seop;Do, Jung-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1603-1606
    • /
    • 2009
  • A new 1D oxalato bridged compound Ni(en)(ox)-2$H_2$O, (ox = oxalate; en = ethylenediamine) has been hydrothermally synthesized and characterized by single crystal X-ray diffraction, IR spectrum, TG analysis, and magnetic measurements. In the structure the Ni atoms are coordinated with four oxygen atoms in two oxalate ions and two nitrogen atoms in one ethylenediamine molecule. The oxalate anion acts as a bis-bidentate ligand bridging Ni atoms in cis-configuration. This completes the infinite zigzag neutral chain, [Ni(en)(ox)]. The interchain space is filled by water molecules that link the chains through a network of hydrogen bonds. Thermal variance of the magnetic susceptibility shows a broad maximum around 50 K characteristic of one-dimensional antiferromagnetic coupling. The theoretical fit of the data for T > 20 K led to the nearest neighbor spin interaction J = -43 K and g = 2.25. The rapid decrease in susceptibility below 20 K indicate this compound to be a likely Haldane gap candidate material with S = 1.

Test of extended thick-walled through-diaphragm connection to thick-walled CFT column

  • Qin, Ying;Chen, Zhihua;Bai, Jingjing;Li, Zilin
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.1-20
    • /
    • 2016
  • The strength and stiffness of the steel beams to concrete-filled tubular columns connections are significantly reduced if the thick-walled components are used. However, the thick-walled tubes used for columns can largely reduce the demand for space and increase the strength-to-weight ratio. This paper describes the cyclic performance of extended through-diaphragm connections between steel beams and thick-walled concrete-filled tubular columns improved with fillets around the diaphragm corners. Test on one full-scale connection was conducted to assess the seismic behavior of the connection in terms of strength, stiffness, ductility, deformation, energy dissipation, and strain distribution. It is shown that the fillets and extended through-diaphragm can alleviate the stress concentration in the connection and thus improve the seismic performance. The test results demonstrate that the through-diaphragm connections with thick-walled concrete-filled tubular columns can offer sufficient energy dissipation capacity and ductility appropriate for its potential application in seismic design.

Experimental exergy assessment of ground source heat pump system

  • Ahmad, Saif Nawaz;Prakasha, Om
    • Advances in Energy Research
    • /
    • v.6 no.2
    • /
    • pp.161-172
    • /
    • 2019
  • The principal intention of this experimental work is to confer upon the exergy study of GSHP associated with horizontal earth heat exchanger for space heating. The exergy analysis recognizes the assessment of the tendency of various energy flows and quantifies the extensive impression of inefficiencies in the system and its components. Consequently, this study intends to provide the enlightenment for well interpretation of exergy concept for GSHP. This GSHP system is composed of heat pump cycle, earth heat exchanger cycle and fan coil cycle. All the required data were measured and recorded when the experimental set up run at steady state and average of the measured data were used for exergy investigation purpose. In this study the rate at which exergy destructed at all the subsystems and system has been estimated using the analytical expression. The overall rational exergetic efficiency of the GSHP system was evaluated for estimating its effectiveness. Hence, we draw the exergy flow diagram by using the various calculated results. The result shows that in the whole system the maximum exergy destruction rate component was compressor and minimum exergy flow component was earth heat exchanger. Consequently, compressor and earth heat exchanger need to be pay more attention.

Fabrication and Electro-Mechanical Characteristic Analysis of Piezoelectric Micro-transformers (마이크로 압전변압기 제작 및 전기-기계적 특성 분석)

  • Kim, Seong-Kon;Seo, Young-Ho;Whang, Kyung-Hyun;Choi, Doo-Sun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.3
    • /
    • pp.231-234
    • /
    • 2008
  • For the applications which need a micro-power supply such as thin and flat displays, micro-robot, and micro-system, it is especially necessary to integrate the passive components because they typically need more than 2/3 of the space of the conventional circuit. Therefore, we have designed and fabricated a novel piezoelectric micro transformer using the PZT thin film and MEMS technologies for application to the energy supply device of the micro-systems. The dimensions of the micro-transformer is $1000{\mu}m\;{\times}\;400{\mu}m\;{\times}\;4.8{\mu}m$ $(length{\times}width{\times}thickness)$. The dynamic displacement of around $9.2{\pm}0.064{\mu}m$ was observed at 10 V. The dynamic displacement varied almost linearly with applied voltage. The average voltage gain (step-up ratio) was approximately 2.13 at the resonant frequency $(F_r=8.006KHz)$ and load resistance $(R_L)$ of 1 $M{\Omega}$.

The Role of Reflected Sunlight in Daylighted Office Environment (사무공간의 자연채광에 있어 반사광의 효용성에 관한 연구)

  • Kim, Gon
    • Solar Energy
    • /
    • v.17 no.4
    • /
    • pp.35-43
    • /
    • 1997
  • An increase in the design of commercial buildings with daylighting is beginning to receive more attention, claimed by some as a second revolution in architecture. The benefits of daylighting may vary significantly because a characteristic of daylight is the way in which it varies. Indirect sunlight, however, received in the interior of a building after reflection, can serve a useful purpose as the main source of illumination. In a cloudy climate it can serve as an occasional welcome addition to the available skylight. Also, site constraints or surrounding urban context may necessitate using reflected light sources, or such sources may be an integral part of the overall design objectives and aesthetics of the proposed projects. When reflected sunlight is introduced into a space, its role in general illumination is what is of interest in this study. Results show that reflected sunlight may help the general illumination in almost same level of significance as daylight from diffuse sky. It is also summarized that the contribution of reflected sunlight to general illumination through the year round may be even and uniform regardless of the season. Consequently, introduction of reflected sunlight should be regarded as one of the successful means to enhance the visual environment in quantitative and qualitative way.

  • PDF

Experimental Study on the Operating Characteristics of a Solar Hybrid Heat Pump System according to Indoor Setting Temperature (실내설정온도에 따른 태양열 하이브리드 열펌프 시스템 운전특성에 대한 실험적 연구)

  • Kim, Won-Seok;Cho, Hong-Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.50-58
    • /
    • 2010
  • Experimental study on the operating characteristics of a solar hybrid heat pump system according to indoor setting temperature were carried out during spring and winter season. The system was consisted of a concentric evacuated tube solar collector, heat medium tank, heat storage tank, and heat pump. As a result, the heating load was increased by 21.1% when the indoor setting temperature rose by 2oC for the same ambient temperature. Besides, the spring season had good outdoor conditions compared to the winter season, therefore the heating load was reduced and heat gain by collector increased, relatively. In case of the winter season, the solar fraction was shown less than 10% because the heat losses of system and space increased considerably. The solar fraction decreased significantly as the indoor setting temperature increased.