• Title/Summary/Keyword: energy space

Search Result 3,298, Processing Time 0.025 seconds

A Study on the Improvement and Environment-friendly Interior Space Planning of High-rise Residences in Korea - focuesd on the case analysis by environment-friendly architectural certification - (국내 초고층 주거의 친환경적 실내 공간 계획 및 개선방안 연구 - 친환경 건축 인증 제도에 의한 사례 분석을 중심으로 -)

  • Kim, Ja-Kyung
    • Korean Institute of Interior Design Journal
    • /
    • v.17 no.3
    • /
    • pp.23-33
    • /
    • 2008
  • After the concept of apartments was introduced in 1960s in Korea, on account of the development of architectural technology and science, high-rise residences in Korea are getting higher, and these residences have been becoming high-rise commercial/residential buildings since 1990. Nowadays, as the construction of high-rise commercial residential building complex is booming, the difference between these complex and high-rise apartments is getting smaller, and these two kind of high-rise residences are becoming new residential style in Korea. And these high-rise residences are considered the symbol of wealth owing to the marketing strategy emphasizing high quality, refined interior, a fair view, and the protection of privacy. However, high-rise residences bring about many problems related to health and psychology caused by the consumption of a large amount of energy, pollutant emission, the deterioration of the quality of indoor air, and vibration. For this reason, in this study, we tried to emphasize the necessity of environment-friendly access to provide healthy living environment and to reduce the negative effect of housing life in high-rise residences, and find the method to improve environment-friendly quality and health of residents in interior space. Therefore, this study aims to detect the problems and the items to be improved of interior spaces of high-rise residences by quantitative, qualitative analysis of the evaluation elements and the floor planning elements deduced from environment-friendly architectural certification in Korea and the other countries, and suggest the guideline to improve the environment-friendly quality of these interior spaces.

Numerical Study for the Optimal Design of Plate Heat Exchanger Using at Seawater Air Conditioning (해수냉난방용 판형 열교환기의 최적설계를 위한 수치적 연구)

  • Kim, Hyeon-Ju;Jung, Young-Kwon;Lee, Ho-Saeng;Yoon, Jung-In;Son, Chang-Hyo
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.29-35
    • /
    • 2014
  • Plate heat exchanger are being applied in the field of OTEC (ocean thermal energy conversion) and SWAC (seawater air conditioning) system. This study is to analyze numerically the heat transfer and pressure drop characteristics by using solid works flow simulation in order to offer optimum design data of plate heat exchanger. Plater heat exchanger proposed in this study is four types. The geometric design parameters of plate heat exchanger are a channel space, a flow orientation, a plate array, the flowrate of working fluid and so on. The main results for numerical analysis of plate heat exchangers are summarized as follows. Heat transfer performance for the channel space of 2.4 mm shows the highest value compared to other spaces. And, the Type 4 plate heat exchanger in Table 2 is the highest performance. From the pressure drop characteristics of plate heat exchanger, the channel space of 3.2 mm shows the lowest value. And Type 1 plate heat exchanger in Table 2 is the lowest pressure drop.

A study on the thrust force and torque calculation models in the design of shield TBM (쉴드 TBM 설계 시 추력과 토크 산정식들에 대한 고찰)

  • Chong, Song-Hun;Lee, Seung-Hun;Ryu, Hee-Hwan;Kim, Hun-Tae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.3
    • /
    • pp.219-237
    • /
    • 2020
  • Rapid economic development and urban population growth have been increasing the necessity for underground space exploration and utilization due to the need of upgrading and expanding the existing infrastructures. TBM has been widely used to construct underground structures with high advance rate and minimal ground disturbance. Two important design parameters, which are available thrust capacity and cutterhead torque, should be estimated for any project in addition to proper selection of TBM type. However, the conventional thrust force and torque estimation model only depends on the empirical equation, which hinders the design process of the optimal thrust hydraulic system and the appropriate hydraulic components. In this study, four thrust and torque calculation models are derived and explained. For TBM design practice, the four estimation models are compared and discussed.

Spark-induced Breakdown Spectroscopy System of Bulk Minerals Aimed at Planetary Analysis (스파크 유도 플라즈마 분광 시스템을 이용한 우주탐사용 암석 분석연구)

  • Jung, Jaehun;Yoh, Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.12
    • /
    • pp.1013-1020
    • /
    • 2020
  • Spark-induced breakdown spectroscopy (SIBS) utilizes an electric spark to induce a strong plasma for collecting atomic emissions. This study analyses the potential for usinga compact SIBS instead of conventional laser-induced breakdown spectroscopy (LIBS) in discriminating rocks and soils for planetary missions. Targeting bulky solids using SIBS has not been successful in the past, and therefore a series of optimizations of electrode positioning and electrode materials were performed in this work. The limit of detection (LOD) was enhanced up to four times compared to when LIBS was used, showing a change from 78 to 20 ppm from LIBS to SIBS. Because of the higher energy of plasma generated, the signal intensity by SIBS was higher than LIBS in three orders of magnitude with the same spectrometer setup. Changing the electrode material and locating the optimum position of the electrodes were considered for optimizing the current SIBS setup being tested for samples of planetary origin.

Empirical Modeling of the Global Distribution of Magnetosonic Waves with Ambient Plasma Environment using Van Allen Probes

  • Kim, Kyung-Chan
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.11-22
    • /
    • 2022
  • It is suggested that magnetosonic waves (also known as equatorial noise) can scatter radiation belt electrons in the Earth's magnetosphere. Therefore, it is important to understand the global distribution of these waves between the proton cyclotron frequency and the lower hybrid resonance frequency. In this study, we developed an empirical model for estimating the global distribution of magnetosonic wave amplitudes and wave normal angles. The model is based on the entire mission period (approximately 2012-2019) of observations of Van Allen Probes A and B as a function of the distance from the Earth (denoted by L*), magnetic local time (MLT), magnetic latitude (λ), and geomagnetic activity (denoted by the Kp index). In previous studies the wave distribution inside and outside the plasmasphere were separately investigated and modeled. Our model, on the other hand, identifies the wave distribution along with the ambient plasma environment-defined by the ratio of the plasma frequency (fpe) to the electron cyclotron frequency (fce)-without separately determining the wave distribution according to the plasmapause location. The model results show that, as Kp increases, the dayside wave amplitude in the equatorial region intensifies. It thereby propagates the intense region towards the wider MLT and inward to L* < 4. In contrast, the fpe/fce ratio decreases with increasing Kp for all regions. Nevertheless, the decreasing aspect differs between regions above and below L* = 4. This finding implies that the particle energy and pitch angle that magnetosonic waves can effectively scatter vary depending on the locations and geomagnetic activity. Our model agrees with the statistically observed wave distribution and ambient plasma environment with a coefficient of determination of > 0.9. The model is valid in all MLTs, 2 ≤ L* < 6, |λ| < 20°, and Kp ≤ 6.

Thermal Vacuum Test of the Phase Change Material Thermal Control Unit Loaded on the Satellite Flight Model and Thermal Model Correlation with Test Results (위성에 탑재된 상변화물질 열제어장치 비행모델의 열진공시험 및 이를 통한 열해석 모델 보정)

  • Cho, Yeon;Kim, Taig Young;Seo, Joung-Ki;Jang, Tae Seong;Park, Hong-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.10
    • /
    • pp.729-737
    • /
    • 2022
  • Melting and icing process of the PCMTCU(Phase Change Material Thermal Control Unit) installed on the NEXTSat-2, which is scheduled to be launched in the second half, was investigated through the results of satellite-level TVT(Thermal Vacuum Test). As a result of the test, it was confirmed that the latent heat of PCM contributes to the temperature stabilization of the heating components. The thermal model for numerical analysis of the PCMTCU was correlated to acquire a reasonable degree of accuracy using the collected temperature measurements during TVT. The periodic temperature variation of the PCMTCU in normal on-orbit operation was predicted with the correlated thermal model, and the quantitative contribution of the PCM on the thermal energy management was evaluated with the liquid fraction. It will receive flight telemetry from the NEXTSat-2 after the launch, and complete the space verification of the PCMTCU.

Stability Analysis of Pipe Rack Module for Underground Complex Plants Construction (복합플랜트 지하 건설을 위한 파이프랙 모듈 공법 안정 해석)

  • Kim, Sewon;Lee, Sangjun;Kim, YoungSeok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.113-124
    • /
    • 2021
  • Underground environmental infrastructure and energy production facilities, which are recognized as avoidable facilities such as landfills, are emerging as an important social issue due to urbanization and economic growth. In order to safely construct a large-scale plant facility in the underground space, it is necessary to increase the utilization of the limited space layout and minimize unnecessary columns. In this study, the plant modularization method(Pipe Rack Module) was reviewed to solve the problems of work constraints, assembly and demolition, process system interconnection, and maintenance that occur when plant facilities are underground. In addition, plant module analysis was performed by applying various load conditions (earthquake load, device load, earth pressure load, etc.) to improve spatial layout usability and secure structure stability. Based on the analysis results under various boundary condition, the implications regarding the minimum installation interval and module arrangement (draft) of basic modules required for the construction of an underground combined plant were derived.

Analysis Study of Diaphragm Wall by Construction Process of Large Underground Space for Complex Plant Installation (복합플랜트 설치를 위한 지하 대공간 건설 공정별 연속벽체 해석 연구)

  • Kim, Sewon;Park, JunKyung;Kim, YoungSeok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.3
    • /
    • pp.11-19
    • /
    • 2022
  • Underground environmental infrastructure and energy production facilities, which are recognized as avoidable facilities such as landfills, are emerging as an important social issue due to urbanization and economic growth. It is necessary to analyze the stability according to various ground conditions and load conditions for the construction of large-scale underground complex plants. In this paper, horizontal/vertical displacement and stress distribution according to the load condition and construction process were analyzed using finite element analysis (FEM), Based on the analysis results of various conditions, factors to be considered in the detailed design and construction of the underground complex plant were reviewed and the implications on design factors (Intermediate wall installation status, Pre-reinforcing area, etc.) for underground large space construction were derived.

A Case Study on the Need for Diagnosis of Current Issues and Policy Support in Marine Space: Focusing on the Specialized Marine Industry in Incheon (해양공간의 현안진단 및 정책지원 필요성에 대한 사례연구 : 인천지역 해양특화산업을 중심으로)

  • Jeong-eun, Lee;Min-eui Jeong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1158-1168
    • /
    • 2022
  • In this study, the specialized marine industry in the area (Incheon) of the case study was identified and the issues related to the current status of marine space utilization were diagnosed. Marine space utilization was selected as the specialized marine industry activity in Incheon through the location quotient index analysis of the marine industry in the target area. A case review of the Yeongheungdo demonstration area and diagnosis of issues in the marine energy development sector with the lowest degree of specialization was conducted, to solve field problems such as overlapping problems in marine-use zones and civil complaints between stakeholders. It was concluded that it is necessary to prepare a policy decision support system based on objective and quantitative grounds.

Ultrasonic guided waves-based fatigue crack detection in a steel I-beam: an experimental study

  • Jiaqi Tu;Xian Xu;Chung Bang Yun;Yuanfeng Duan
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.13-27
    • /
    • 2023
  • Fatigue crack is a fatal problem for steel structures. Early detection and maintenance can help extend the service life and prevent hazards. This paper presents the ultrasonic guided waves-based (UGWs-based) fatigue crack detection of a steel I-beam. The semi-analytical finite element model has been built to obtain the wave propagation characteristics. Damage indices in both time and frequency domains were analyzed by considering the characteristic variations of UGWs including the amplitude, phase angle, and wave packet energy. The pulse-echo and pitch-catch methods were combined in the detection scheme. Lab-scale experiments were conducted on welded steel I-beams to verify the proposed method. Results show that the damage indices based on the characteristic variations in the time domain can identify and localize the fatigue crack before it enters the rapid growth stage. The damage severity can be reasonably evaluated by analyzing the time-domain damage indices. Two nonlinear damage indices in the frequency domain give earlier warnings of the fatigue crack than the time-domain damage indices do. The identification results based on the above two nonlinear indices are found to be less consistent under various excitation frequencies. More robust nonlinear techniques needed to be searched and tested for early crack detection in steel I-beams in further study.