• Title/Summary/Keyword: energy saving technique

Search Result 146, Processing Time 0.02 seconds

A Study on the Right Direction of Green Standard for Energy and Environmental Design(G-SEED) from the Perspective of Landscape Architecture (조경관점의 녹색건축 인증기준에 대한 방향 정립)

  • Cha, Uk Jin;Nam, Jung Chil;Yang, Geon Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.4
    • /
    • pp.45-56
    • /
    • 2016
  • In this study, an analysis has been conducted on the evaluation criteria of current G-SEED(Green Standard for Energy and Environmental Design) and on the 78 buildings, certified by G-SEED, for 3 years from November, 2012 to November, 2015. Based on the results of this analysis, four issues are driven and proposed hereinafter. Issue 1 : Nowadays, the psychological proportion of landscape architecture in building is getting greater than ever so that it shows reliable reduction of carbon dioxide. Therefore, so far as the eight kinds of buildings are concerned, the evaluation items of G-SEED must include those of landscape architecture mandatorily through its enlargement. Issue 2 : It is undesirable factor that inhibits precise evaluation on landscaping area to let other areas appraise landscape architecture because it requires outstanding professionalism. So, G-SEED should not only ensure landscaping professionalism for the correct evaluation but also let landscape area participate in assessing other areas. Issue 3 : Many previous researches turned out that landscape planting technique has excellent effect on saving energy and reducing temperature of buildings. Thus, landscape planting technique of landscape area is required to be one of the evaluation items of energy sector. Issue 4 : Tree management also has to be newly included as one of the evaluation factor for the maintenance relating to the landscape architecture. G-SEED, enacted and enforced by the Green Building Creation Support Act in 2013, surely is effective system to reduce carbon dioxide in buildings. This is a special Act in its nature that is superior to Construction Law and must be observed by all means to construct buildings. Under the umbrella of this legal system, various of researches and products are contributing to creating new jobs in construction area. However, it is a well-known fact that landscape architecture area has shown less interest on this Act than that of construction area. In conclusion, it is necessary that landscape industry should conduct continuous researches on G-SEED and pay more attention to the Act enough to harvest related products and enlarge its work area.

Development of Education and Training Programs and Job Analysis on 'Mechanical Facilities Maintenance Manager' Using DACUM (DACUM을 활용한 기계설비유지관리자 직무분석 및 교육훈련 프로그램 개발)

  • Oh, Chun Shik;Cho, Jeong Yoon;Jeong, Yousung;Song, Nakhyun
    • 대한공업교육학회지
    • /
    • v.44 no.2
    • /
    • pp.86-103
    • /
    • 2019
  • The purpose of this study is to provide basic data on the development of education and training programs for training 'mechanical facilities maintenance manager'. To this end, the DACUM technique was used for job analysis and education and training programs were developed through expert consultation meetings. The job analysis was based on the 10-member DACUM Committee to derive the job definition, job model, job description, and task description of the 'mechanical facilities maintenance manager'. The main findings are as follows. First, the 'mechanical facilities maintenance manager' was defined as those who operate, inspect, diagnose, and repair mechanical facilities to provide the best performance and efficient operation management, provide a safe and pleasant environment, and perform energy saving and facility life extension tasks. Second, the duties of the 'mechanical facilities maintenance manager' analyzed in the job model consist of the comprehensive plan for operation of mechanical facilities, energy management of mechanical facilities, operation management of mechanical facilities, maintenance of mechanical facilities, safety environment management of mechanical facilities, and customer support management of mechanical facilities. Considering the nature and content of the duties, 4 to 11 tasks per duty were derived and a total of 33 tasks were presented as job model. Third, the curriculum for the 'mechanical facilities maintenance manager' was set up in two courses: Practice I for Mechanical Facilities Maintenance and Practice II for Mechanical Facilities Maintenance. Considerations and policy suggestions were presented when applying and implementing education and training programs based on the results of the research.

$In_2O_3$ Thin Film Ozone Sensor Prepared by Sol-Gel Method (졸-겔법을 이용한 $In_2O_3$ 박막의 오존 센서)

  • Lee, Yun-Su;Song, Kap-Duk;Choi, Nak-Jin;Joo, Byung-Su;Kang, Bong-Hwi;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.101-107
    • /
    • 2001
  • A highly selective, sensitive and reliable ozone sensing $In_2O_3$ thin film was fabricated by a sol-gel method. The fabricated film is operated at a relatively lower temperature than ever developed thin films and saved operating power. $In_2O_3$ films deposited by sol-gel technique has been recently attracted because it is an economical and energy saving method and precisely controlled microstructure. Indium alkoxide precursor was synthesized from the reaction between indium hydroxide and butanol. PVA binder was used to improve adhesion of the films. The $In_2O_3$ thin films were obtained by spin coating from 1 to 5 times followed by drying at $100^{\circ}C$ and calcining at $600^{\circ}C$ for 1h. The film thickness was controlled by the number of coating time. The morphology and the thickness of the $In_2O_3$ films were examined by a SEM and XRD. The $In_2O_3$ thin films show a high sensitive to ozone gas at operating temperature of $250^{\circ}C$. The $In_2O_3$ sensor has very good selectivity to $CH_4$, CO, $C_4H_{10}$ and ethanol.

  • PDF

Quasi-Static Equilibrium of a Propeller Shaft in a Hydrodynamic Oil-Lubricated Stern Tube Bearing (윤활유(潤滑油) 선미관(船尾管) 베어링 축계(軸系)의 준정적(準靜的) 평형상태(平衡狀態)에 관한 연구(硏究))

  • S.Y.,Ahn;S.S.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.3
    • /
    • pp.51-61
    • /
    • 1989
  • Recently, the growth in the propulsion power and propeller size of typical energy saving ships has resulted in severe damages of the oil-lubricated stern tube bearing. Consequently, a more rational analytical method for the design of the shafting system is required. In this paper an analytical method applicable to the design of the oil-lubricated stern tube bearing and shafting system is presented. The method consists of the finite element analysis of the shafting system and the oil film hydrodynamics. The shafting system is modeled as a three-dimensional problem using beam elements taking account for the steady components of thrust, lateral forces and moments of the propeller as well as the elastic foundation effects. The oil film hydrodynamics is modeled as a two-dimensional problem. Equal and retangular elements employing hourglass control method are used for the construction of the oil film fluidity matrix. To search the quasi-static equilibrium position between the propeller shaft and the oil film, an optimization technique is employed. Some numerical results based on the proposed method are compared with some measured and numerical data available. They show acceptable agreements with the data.

  • PDF

A TBM data-based ground prediction using deep neural network (심층 신경망을 이용한 TBM 데이터 기반의 굴착 지반 예측 연구)

  • Kim, Tae-Hwan;Kwak, No-Sang;Kim, Taek Kon;Jung, Sabum;Ko, Tae Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.1
    • /
    • pp.13-24
    • /
    • 2021
  • Tunnel boring machine (TBM) is widely used for tunnel excavation in hard rock and soft ground. In the perspective of TBM-based tunneling, one of the main challenges is to drive the machine optimally according to varying geological conditions, which could significantly lead to saving highly expensive costs by reducing the total operation time. Generally, drilling investigations are conducted to survey the geological ground before the TBM tunneling. However, it is difficult to provide the precise ground information over the whole tunnel path to operators because it acquires insufficient samples around the path sparsely and irregularly. To overcome this issue, in this study, we proposed a geological type classification system using the TBM operating data recorded in a 5 s sampling rate. We first categorized the various geological conditions (here, we limit to granite) as three geological types (i.e., rock, soil, and mixed type). Then, we applied the preprocessing methods including outlier rejection, normalization, and extracting input features, etc. We adopted a deep neural network (DNN), which has 6 hidden layers, to classify the geological types based on TBM operating data. We evaluated the classification system using the 10-fold cross-validation. Average classification accuracy presents the 75.4% (here, the total number of data were 388,639 samples). Our experimental results still need to improve accuracy but show that geology information classification technique based on TBM operating data could be utilized in the real environment to complement the sparse ground information.

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF