• Title/Summary/Keyword: energy saving control

Search Result 705, Processing Time 0.026 seconds

A NUMERICAL STUDY ON THE COATING THICKNESS IN CONTINUOUS HOT-DIP GALVANIZING (연속 아연 도금 두께에 관한 수치 해석적 연구)

  • Lee, Dong-Won;Shin, Seung-Young;Cho, Tae-Seok;Kwon, Young-Doo;Kwon, Soon-Bum
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • To control the coating thickness of zinc in the process of continuous hot-dip galvanizing, it is known from early days that the gas wiping through an air knife system is the most effective because of the obtainable of uniformity of coating thickness, possibility of thin coating, working ability in high speed and simplicity of control. But, the gas wiping using in the galvanizing process brings about a problem of splashing from the strip edge for a certain high speed of coating. Also, it is known that the problem of splashing directly depends upon the galvanizing speed and nozzle stagnation pressure. In theses connections, in the present study, we proposed two kinds of air knife systems having the same expansion rate of nozzle, and the jet structures and coating thicknesses from a conventional and new proposed nozzles are compared. In numerical analysis, the governing equations consisted of two-dimensional time dependent Navier-Stokes equations, standard k-e turbulence model to solve turbulence stress and so on are employed. As a result, it is found that it had better to use the constant rate nozzle from the point view of the energy saving to obtain the same coating thickness. Also, to enhance the cutting ability at the strip, it is advisable to use an air knife with the constant expansion rate nozzle.

Study on characteristics of thin films for reflection of near infrared light (근적외선 반사 박막 특성 연구)

  • Chung, Youn-Gil;Park, Hyun-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4121-4124
    • /
    • 2015
  • Near infrared blocking function in energy saving window glass is required. The design, deposition and characteristics of optical thin films for reflection of near-infrared light were studied. The optical thin film is designed as laminated film structure with low refractive index film and high index film. Deposition experiments of $SiO_2$ and $TiO_2$ thin films with designed structure using the RF sputtering method were carried out. The characteristics of the thin film with deposition conditions were analyzed. High-refractive-index thin film of $TiO_2$/low refractive-index thin film of $SiO_2$ and high-refractive-index thin film of $TiO_2$ structure for reflection of near-infrared light was designed to be simulated. Results of simulation showed reflectance of 30% or more in the range from 930nm to 1682nm. Triple layer thin films fabricated with simulated results showed wavelength bands from 930nm to 1525nm for the reflectance of 33% or more.

Development of a Power Management System for Efficient Power usage of Intelligent Ship (지능형 선박의 효울적인 전력사용을 위한 전력 관리 시스템 개발)

  • Park, Ji-Sang;Jeon, Min-Ho;Lee, Myung-Eui
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.6
    • /
    • pp.609-615
    • /
    • 2013
  • As with any ships, adequate power provision is crucial, especially on the ocean navigating ships far from the land. In order to resolve the effective and economic power supply system of any ship in operation, in this paper, we propose a power management system that intelligently controls the power supply in ships. Power management systems in this design consist of a power load detection system, a generator configuration system, and a power monitoring system respectively. The CT / PT sensor is used to measure amount of current and power in the power detection system, and according to the collected information from various sensor, the generator configuration system will switch on and off the main / sub generator effectively. Finally, the power monitoring system will display all status information of this power management system at a glance for users. This power management systems implemented in this paper is evaluated via real-time experiments, which works well as designed, and certified by KSCIEC61892-1:2012 and KSCIEC60950-1:2008.

A study on lighting system for LED color temperature control using wireless communication and smartphone (무선 통신과 스마트폰을 이용한 LED 색온도 제어 조명 시스템에 관한 연구)

  • Hong, Young-Jin;Lim, Soon-Ja;Lee, Wan-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.72-77
    • /
    • 2017
  • Lighting systems in modern society has been developed using a combination of IT technology and LED lighting for the purpose of bringing about changes in human-centered natural lighting and to take advantage of the efficient management and energy saving of LED lighting. In this paper, we propose an LED lighting control system that can control the color temperature and brightness of LED lighting composed of 3000K Warm LEDs and 6000K Cool LEDs by using an Arduino Due and wireless communication technology such as Bluetooth and Zigbee. The Arduino Due allows the color temperature of the lighting to be adjusted in several steps by controlling the duty rate and enables many lights to be controlled using Zigbee communication capable of 1: N multiple communication. By using Bluetooth communication, it is possible to easily control the LED lighting by means of a smartphone application, thereby enhancing the convenience for the user. The wireless communication based LED lighting control system implemented in this study cannot only provide human-centered lighting through its color temperature control from 3067K to 5960K and illumination control, but can also reduce the power consumption and be used as a natural-friendly lighting system.

Survey of ICT Apply to Plastic Greenhouse, Rack·Pinion Adaption to Single Span and CFD Analysis (온실 ICT융복합 실태조사와 복숭아형 랙피니언천창 적용 단동온실 및 CFD 유동해석)

  • Cho, Kyu Jeong;Kim, Ki Young;Yang, Won Mo
    • Journal of Bio-Environment Control
    • /
    • v.24 no.4
    • /
    • pp.308-316
    • /
    • 2015
  • This study was conducted to investigate the situation of ICT apply to plastic greenhouse, and the results be apply to design of new one. A CFD analysis were conducted to monitering the ventilation and energy saving of the single span greenhouse newly designed. The causes of delay to apply ICT to plastic greenhouse are the high cost for installation(24%), insufficiency of after services(19%), often disorder(16%), unskillful management of soft ware(15%), insufficient ICT efficiency(13%) and unsatisfying of income increase(12%). The parts of problem occurred in ICT plastic greenhouse are the structure, actuator, environmental control system and sensor(approximate 14%, respectively), remote control technique(13%), plant management technique(12%), energy saving technique(10%) and utilization of software(8%). In the condition of lateral window closed, the average wind speed changed to slow, but it was faster in the condition of leeward side window opened than in the condition of lee and winward side window opened. The air movement in the condition of lateral window closed occur by air moving fan not by out air. It is not affect the room temperature but effective the uniformity of room temperature. The average temperature of low height greenhouse was uniform than high height one. The average temperature in condition of 3rd curtain opened become same with outside temperature after 2 hours, but take more 5 hours in condition of 3rd curtain closed.

Analysis and Design of Profiling Adaptor for XML based Energy Storage System (XML 기반의 에너지 저장용 프로파일 어댑터 분석 및 설계)

  • Woo, Yongje;Park, Jaehong;Kang, Mingoo;Kwon, Kiwon
    • Journal of Internet Computing and Services
    • /
    • v.16 no.5
    • /
    • pp.29-38
    • /
    • 2015
  • The Energy Storage System stores electricity for later use. This system can store electricity from legacy electric power systems or renewable energy systems into a battery device when demand is low. When there is high electricity demand, it uses the electricity previously stored and enables efficient energy usage and stable operation of the electric power system. It increases the energy usage efficiency, stabilizes the power supply system, and increases the utilization of renewable energy. The recent increase in the global interest for efficient energy consumption has increased the need for an energy storage system that can satisfy both the consumers' demand for stable power supply and the suppliers' demand for power demand normalization. In general, an energy storage system consists of a Power Conditioning System, a Battery Management System, a battery cell and peripheral devices. The specifications of the subsystems that form the energy storage system are manufacturer dependent. Since the core component interfaces are not standardized, there are difficulties in forming and operating the energy storage system. In this paper, the design of the profile structure for energy storage system and realization of private profiling system for energy storage system is presented. The profiling system accommodates diverse component settings that are manufacturer dependent and information needed for effective operation. The settings and operation information of various PCSs, BMSs, battery cells, and other peripheral device are analyzed to define profile specification and structure. A profile adapter software that can be applied to energy storage system is designed and implemented. The profiles for energy storage system generated by the profile authoring tool consist of a settings profile and operation profile. Setting profile consists of configuration information for energy device what composes energy saving system. To be more specific, setting profile has three parts of category as information for electric control module, sub system, and interface for communication between electric devices. Operation profile includes information in relation to the method in which controls Energy Storage system. The profiles are based on standard XML specification to accommodate future extensions. The profile system has been verified by applying it to an energy storage system and testing charge and discharge operations.

Environmental Prediction in Greenhouse According to Modified Greenhouse Structure and Heat Exchanger Location for Efficient Thermal Energy Management (효율적인 열에너지 관리를 위한 온실 형상 및 열 교환 장치 위치 개선에 따른 온실 내부 환경 예측)

  • Jeong, In Seon;Lee, Chung Geon;Cho, La Hoon;Park, Sun Yong;Kim, Seok Jun;Kim, Dae Hyun;Oh, Jae-Heun
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.278-286
    • /
    • 2021
  • In this study, based on the Computational Fluid Dynamics (CFD) simulation model developed through previous study, inner environmenct of the modified glass greenhouse was predicted. Also, suggested the optimal shape of the greenhouse and location of the heat exchangers for heat energy management of the greenhouse using the developed model. For efficient heating energy management, the glass greenhouse was modified by changing the cross-section design and the location of the heat exchanger. The optimal cross-section design was selected based on the cross-section design standard of Republic of Korea's glass greenhouse, and the Fan Coil Unit(FCU) and the radiating pipe were re-positioned based on "Standard of greenhouse environment design" to enhance energy saving efficiency. The simulation analysis was performed to predict the inner temperature distribution and heat transfer with the modified greenhouse structure using the developed inner environment prediction model. As a result of simulation, the mean temperature and uniformity of the modified greenhouse were 0.65℃, 0.75%p higher than those of the control greenhouse, respectively. Also, the maximum deviation decreased by an average of 0.25℃. And the mean age of air was 18 sec. lower than that of the control greenhouse. It was confirmed that efficient heating energy management was possible in the modified greenhouse, when considered the temperature uniformity and the ventilation performance.

Field Scale Study for Energy Efficiency Improvement of Crematory System by the Shape Optimization of Combustion Chamber (화장로 형상 최적화를 통한 에너지효율개선을 위한 실증연구)

  • Won, Yong-Tae;Lee, Seung-Mok
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.546-555
    • /
    • 2019
  • The purpose of this study was to improve the performance of the bogie-type crematory, which is the mainstream of domestic crematory equipment. A field scale technology was investigated via increasing the volume by changing the shape of the furnace and reducing the cremation time and saving the energy usage through the optimization of burner combustion control. First, the optimized structural design through thermal flow analysis increases the volume of the main combustion chamber by about 70%, which increases the residence time of the combustion flue gas. A designed pilot crematory was then installed and the combustion behavior was tested under various operating conditions and the optimum operating plan was derived from for each furnace shape. Based on the results, the practically applicable crematory was designed and installed at Y crematorium in the P City. Optimal combustion conditions could be derived through operating the demonstration crematory furnace. The crematory time and fuel consumption could be minimized by increasing the energy efficiency by increasing the residence time of high temperature combustion flue gas. In other words, the crematory time and fuel consumption were 38 min and $21.8Nm^3$, respectively which were shortened by 44.1 and 54.4% lower than that of the existing crematory, respectively.

An Experimental Study on the Improvement of Insulation Performance in Old University Buildings and Economic Evaluation (노후화된 대학 건물의 단열성능 향상 실험 및 경제성 평가)

  • Lee, Jeongmin;So, Wonho;Cho, Kyungchan;Choi, Dongnyeok;Lee, Kwon-yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.287-297
    • /
    • 2020
  • This study examined ways of improving the internal insulation performance of aging university buildings, and to enhance the convenience of occupants in university buildings and the insulation effect of aging buildings. This research was conducted to solve the problem of continuous requests for improving the insulation performance of office workers in the Nehemiah Hall building of Handong University. The results showed that the internal temperature of Nehemiah Hall was low compared to the internal temperature of the adjacent building. Considering the characteristics of the building, the university chose insulating materials under the theme of internal insulation. The experiment was conducted by installing internal wall insulation used in the market by producing a model room that miniaturized the university professor's office. Based on the experimental results, an economic evaluation was conducted to analyze the insulation effect by measuring the heating time and actual heat transmission coefficient. An economic evaluation was conducted by experiment and theory and on a winter and summer basis. According to the research, when an Isopink (30 T) was introduced as an internal insulation material in 60 offices of Nehemiah Hall, it could save up to 1,071,600 won in total during the winter season and 109,200 won during the summer season.

Control of Temperature and the Direction of Wind Using Thermal Images and a Fuzzy Control Method (열 영상과 퍼지 제어 기법을 이용한 온도 및 풍향 제어)

  • Kim, Kwang-Baek;Cho, Jae-Hyun;Woo, Young-Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.11
    • /
    • pp.2083-2090
    • /
    • 2008
  • In this paper, we propose a method for control of temperature and the direction of wind in an air-cooler using thermal images and fuzzy inference rules in order to achieve energy saving. In a simulation for controlling temperature, a thermal image is transformed to a color distribution image of $300{\times}400$ size to analyze the thermal image. A color distribution image is composed of R, G and B values haying temperature values of Red, Magenta, Yellow, Green, Cyan and Blue. Each color has a temperature value from $24.0^{\circ}C$ to $27.0^{\circ}C$ and a color distribution image is classified into height hierarchies from level 1 to level 10. The classified hierarchies have their peculiar color distributions and temperature values are assigned to each level by temperature values of the peculiar colors. The process for controlling overall balance of temperature and the direction of wind in an indoor space is as follows. Fuzzy membership functions are designed by the direction of wind, duration time, and temperature and height values of a color distribution image to calculate the strength of wind. After then, the strength of wind is calculated by membership values of membership functions.