• Title/Summary/Keyword: energy resources

Search Result 4,629, Processing Time 0.035 seconds

Investigation on the Wave Power Resources on the East Coast of Korea Based on Field Measurement Data (실측자료에 근거한 동해안 파력 부존량 검토)

  • Jeong, Weon-Mu;Oh, Sang-Ho;Lee, Dal-Soo;Lee, Dong-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.630-634
    • /
    • 2007
  • In the past, the use of wave energy has mainly been focused on conversion of large wave energy resources in the far offshore areas. However, with the technological improvement of converting wave energy into electricity, the energy resources at much shallow waters are now considered as a site for possible installation of the devices that obtain energy from the waves. In this respect, the wave energy resources on the east coast of Korea, where the sea is milder than the open ocean, were investigated using the field measurement data obtained at three different locations along the coast. For all the locations, the wave power was greater in winter season, compared to summer season. The estimated wave power varied from 2 to 4.5 kW/m on average, depending on the measurement locations.

  • PDF

Analysis of Small Hydropower Resource Characteristics for Nakdong River System (낙동강수계의 소수력자원 특성 분석)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.68-75
    • /
    • 2012
  • Small hydropower is one of the many types of new and renewable energy, which is planning to develop, as the country is abundant in endowed resources. In order to fully utilize small hydropower resources, there is a need for greater precision in quantifying small hydropower resources and establish an environment in which energy sources can be discovered using the small hydropower resource management system. This study has given greater precision to calculate annual electricity generation and capacity of small hydropower plants of Nakdong river system by inquiring into average annual rainfall, basin area and runoff coefficient, which is anticipated to promote small hydropower resources utilization. Small hydropower resource management system was also established by additionally providing base information on quantified small hydropower resources and analysis function and small hydropower generator status, rivers, basin, rainfall gauging station, water level gauging station etc.. Small hydropower resource management system can be used gather basic information for positive applications of small hydropower energy nationwide.

Evaluation of rock cutting efficiency of the actuated undercutting mechanism

  • Jeong, Hoyoung;Wicaksana, Yudhidya;Kim, Sehun;Jeon, Seokwon
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.359-368
    • /
    • 2022
  • Undercutting using an actuated disc cutter (ADC) involves more complex cutting mechanism than traditional rock cutting does, requiring the application of various new cutting parameters, such as eccentricity, cutter inclination angle, and axis rotational speed. This study presents cutting-edge laboratory-scale testing equipment that allows performing ADC tests. ADC tests were carried out on a concrete block with a specified strength of 20 MPa, using a variety of cutting settings that included penetration depth (p), eccentricity (e), and linear velocity (v). ADC, unlike pick and disc cutting, has a non-linear cutting path with a dynamic cutting direction, requiring the development of a new method for predicting cutting force and specific energy. The influence of cutting parameters to the cutter forces were discussed. The ratio of eccentricity to the penetration depth (e/p) was proposed to evaluate the optimal cutting condition. Specific energy varies with e/p ratio, and exhibits optimum values in particular cases. In general, actuated undercutting may potentially give a more efficient cutting than conventional pick and disc cutting by demonstrating reasonably lower specific energy in a comparable cutting environment.

Analysis of Biomass Energy Potential around Major Cities in South Korea (국내 주요도시 주변의 바이오매스 에너지 잠재량 분석)

  • Kook, Jin Woo;Lee, See Hoon
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.178-183
    • /
    • 2015
  • Biomass is recognized as one of important renewable energy sources because it can be converted and used as solid, gaseous and liquid forms. Also, biomass is one of promising ways to solve the depletion of fossil fuels and global warming problems. The information about local biomass energy potentials and space energy densities can be powerfully utilized to determine the scale of biomass energy conversion plant and to analyze economic effects. The latest data on domestic biomass resources, such as agricultural, forestry, livestock and urban wastes, were collected from various government organizations and institutes and were analyzed to calculate biomass energy potential and space energy density. As local areas in South Korea to collect biomass resources increased, energy potentials increased, but space energy densities of total biomass decreased.

Multi-Regional Resources Management Practice using Water-Energy-Food Nexus Simulation Model

  • Wicaksono, Albert;Jeong, Gimoon;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.163-163
    • /
    • 2019
  • The rapidly growing global population increases the awareness of water, energy, and food security worldwide. The concept of Water, Energy, and Food nexus (hereafter, WEF nexus) has been widely introduced as a new resources management concept that integrate the water, energy, and food in a single management framework. Recently, WEF nexus analyzes not only the interconnections among the resources, but also considers the external factors (such as environment, climate change, policy, finance, etc) to enhance the resources sustainability by proper understanding of their relations. A nation-level resources management is quite complex task since multiple regions (e.g., watersheds, cities, and counties) with different characteristics are spatially interconnected and transfer the resources each other. This study proposes a multiple region WEF nexus simulation and transfer model. The model is equipped with three simulation modules, such as local nexus simulation module, regional resources transfer module, and optimal investment planning module. The model intends to determine an optimal capital investment plan (CIP), such as build-up of power plants, water/waste water treatment plants, farmland development and to determine W-E-F import/export decisions among areas. The objective is to maximize overall resources sustainability while minimize financial cost. For demonstration, the proposed model is applied to a semi-hypothetical study area with three different characterized cities. It is expected the model can be used as a decision support tool for a long-term resources management planning process.

  • PDF

Induced Polarization Surveys of Contaminants and Introduction to Case Studies (오염원에 대한 유도분극탐사 반응 및 사례 소개)

  • Kim, Bitnarae;Caesary, Desy;Yu, Huieun;Cho, AHyun;Song, Seo Young;Cho, Sung Oh;Joung, Inseok;Nam, Myung Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.2_spc
    • /
    • pp.86-100
    • /
    • 2020
  • Analyzing and monitoring environmental contaminants based on geophysical exploration techniques have become important and it is now widely applied to delineate spatial distribution geophysical characteristics in wide area. Among the techniques, induced polarization (IP) method, which measures polarization effects on electrical potential distribution, has drawn much attention as an effective tool for environmental monitoring since IP is sensitive to changes in biochemical reactions. However, various reactions stemming from the presence of multiple contaminants have greatly enhanced heterogeneity of polluted sites to result in highly variable electrical characteristics of the site. Those contaminants influence chemical and physical state of soil and groundwater to alter electrical double layer, which in turn influences polarization of the media. Since biochemical reactions between microbes and contaminants result in various IP effects, IP laboratory experiments were conducted to investigate IP responses of the contaminated soil samples under various conditions. Field IP surveys can delineate the spatial distribution of contamination, while providing additional information about electrical properties of a target medium, together with DC resistivity. Reviewing IP effects of contaminants as well as IP surveys can serve as a good starting point for the application of IP survey in site assessment for environmental remediation.

Development Trends of Tidal Current Energy and Its Test Bed (조류에너지의 이용기술)

  • Yang, Changjo;Hoang, T.G.
    • Vacuum Magazine
    • /
    • v.3 no.2
    • /
    • pp.11-16
    • /
    • 2016
  • Tidal current energy is the most interesting renewable resources that have been less harnessed. Korea has globally outstanding tidal current energy resources and it is highly needed to develop a tidal current energy conversion system. It is reported that the total amount of available tidal current energy is approximately 6GW in Korea. A good tidal site candidate is required a large amount of fast moving water, bathymetry and seabed properties, no conflicts with other users and is close to a load and grid interconnection. In this review, we summarized the results of R&D projects regarding tidal current resources, utilization projects and demonstration test bed.