• Title/Summary/Keyword: energy ratio(efficiency)

Search Result 1,233, Processing Time 0.025 seconds

Energy-Efficient Last-Level Cache Management for PCM Memory Systems

  • Bahn, Hyokyung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.188-193
    • /
    • 2022
  • The energy efficiency of memory systems is an important task in designing future computer systems as memory capacity continues to increase to accommodate the growing big data. In this article, we present an energy-efficient last-level cache management policy for future mobile systems. The proposed policy makes use of low-power PCM (phase-change memory) as the main memory medium, and reduces the amount of data written to PCM, thereby saving memory energy consumptions. To do so, the policy keeps track of the modified cache lines within each cache block, and replaces the last-level cache block that incurs the smallest PCM writing upon cache replacement requests. Also, the policy considers the access bit of cache blocks along with the cache line modifications in order not to degrade the cache hit ratio. Simulation experiments using SPEC benchmarks show that the proposed policy reduces the power consumption of PCM memory by 22.7% on average without degrading performances.

EFFECTS OF DIETARY TRYPTOPHAN LEVEL AND FOOD INTAKE ON ENERGY UTILIZATION BY MALE GROWING CHICKS

  • Sugahara, K.;Kubo, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.4
    • /
    • pp.647-651
    • /
    • 1992
  • Two experiments involving comparative slaughter procedures were conducted to see if the decrease in total energy retention (ER) resulted from the decreased food intake in growing chicks fed on a diet containing tryptophan less than the requirement. Ad libitum-feeding a diet containing 50% of tryptophan of a control diet (1.5 g/kg) decreased body weight gain, apparent metabolizable energy intake (AMEI), ER and ER : AMEI ratio. When both the control diet and the 0.75 g/kg tryptophan diet were tube-fed at the two levels of food intake, body weight gain was significantly lower in chicks on the low tryptophan diet than in the control chicks at each level of intake. AME : gross-energy ratio decreased only when the low tryptophan diet was tube-fed at the higher level of intake. Energy retained as protein was significantly decreased by the low tryptophan level and reduction of food intake. Energy retained as fat was affected by food intake. ER and ER : AMEI ratio were unaffected by dietary tryptophan level and were proportional to AMEI. Heat increment of feeding was affected by neither tryptophan nor food intake. These results indicate that the decreased ER in chicks fed on the low tryptophan diet was due mainly to the decreased food intake and not to the decreased efficiency of ME utilization.

A Study on analyzing the Plan to save the Demand for Energy and introduce the Renewable Energy System in Innovation City (혁신도시의 에너지수요절감 및 신재생에너지도입계획 분석연구)

  • Kim, Ji-Yeon;Hong, Sung-Hee;Park, Hyo-Soon;Suh, Seung-Jik
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.474-479
    • /
    • 2007
  • The innovation city, which meets the best innovation condition to cooperate with the public institution and the industry-university-researcher closely and the good environment of housing, education, health and culture, was promoted to make the local city characteristic and independent. The plan to make the locally independent base have to consider the economical condition, the quality of life and the sustainable development. First of all The balanced city-planning is demanded to build friendly environmental and sustainable city. energy-efficient buildings shuld be designed to deal with the energy and environment problem. So we analyze the energy demand plan and the method to introduce the renewable energy system. As a result, the reduction ratio of the energy demand are greatly imbalanced between innovation cities. and only the Gwang-ju Jeon-nam innovation city is planed to apply the renewable energy to 5% of total energy demand.

  • PDF

A Study on the Performance Characteristics According to the Compression Ratio of Spark Ignition Engine Fuelled with Coal Oil (Coal Oil을 사용한 스파크 점화기관의 압축비 변화에 따른 엔진 성능에 관한 연구)

  • HAN, SUNG BIN;CHUNG, YON JONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.2
    • /
    • pp.225-230
    • /
    • 2017
  • Coal oil is widely used as a home heating fuel for portable and installed coal oil heaters. Today, Coal oil is widely used as fuel for jet engines and some rocket engines in several grades. This paper describes the performance characteristics according to the compression ratio of spark ignition engine fuelled with coal oil. As a result, the following knowledge is obtained: As the compression ratio is decreased, there is an increase in torque, indicated mean effective pressure (IMEP), heat release rate, and brake thermal efficiency. Higher compression ratio of the engine decreases the ignition delay period, combustion period, and cooling loss.

Prediction of Potential $CO_2$ Reduction through Ground Transportation Modal Shift with Fu7el Type and Scenarios (연료원별 온실가스배출량을 고려한 육상교통수단에서의 Modal Shift 효과)

  • Kim, Cho-Young;Lee, Cheul-Kyu;Kim, Yong-Ki
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.521-527
    • /
    • 2011
  • Korea announced GHG reduction goal, 30% reduction compare with 2020 BAU and reduction target for each industry sector is planning. Transportation sector also trying to make effective technical and political counterplan of allocated GHG reduction target such as material lightening, energy efficiency improvement and Modal shift technology and so on. Modal Shift is shifting low energy efficiency vehicle to high energy efficiency vehicle which is economically meaningful under current market conditions. We can get not only energy efficiency improvement but also GHG reduction effect through modal shift. Modal Shift is effectively applying and studied in logistics field in Europe and Japan and one of the Indian companies has been registered CDM project activity involving modal shift from roadways to railways for finished goods. In this study, the scenarios are developed with detail modal shift ratio and fuel type base on state of road and rail use and GHG emission factor for each fuel type from MLTM. This result can be used as basic information to improve policies and promote increasing use of train which is more environment friendly transportation vehicle.

  • PDF

Performance of ZF Precoder in Downlink Massive MIMO with Non-Uniform User Distribution

  • Kong, Chuili;Zhong, Caijun;Zhang, Zhaoyang
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.688-698
    • /
    • 2016
  • In this paper, we investigate the achievable sum rate and energy efficiency of downlink massive multiple-input multiple-output antenna systems with zero-forcing precoding, by taking into account the randomness of user locations. Specifically, we propose two types of non-uniform user distributions, namely, center-intensive user distribution and edge-intensive user distribution. Based on these user distributions, we derive novel tight lower and upper bounds on the average sum rate. In addition, the impact of user distributions on the optimal number of users maximizing the sum rate is characterized. Moreover, by adopting a realistic power consumption model which accounts for the transmit power, circuit power and signal processing power, the energy efficiency of the system is studied. In particular, closed-form solutions for the key system parameters, such as the number of antennas and the optimal transmit signal-to-noise ratio maximizing the energy efficiency, are obtained. The findings of the paper suggest that user distribution has a significant impact on the system performance: for instance, the highest average sum rate is achieved with the center-intensive user distribution, while the lowest average sum rate is obtained with the edge-intensive user distribution. Also, more users can be served with the center-intensive user distribution.

Adaptive Streaming System for Improving Energy Efficiency over IEEE 802.11e U-APSD (IEEE 802.11e U-APSD 환경에서 에너지 효율 향상을 위한 적응적인 스트리밍 시스템)

  • Lee, Sung-Hee;Chung, Kwang-Sue
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.11
    • /
    • pp.1066-1070
    • /
    • 2010
  • In wireless network, energy efficiency is an important design consideration for continuous multimedia streaming service. This paper proposes a new streaming system, called BACASS (Buffer-Aware and Content-Aware Streaming System) that working on the 802.11e U-APSD (Unscheduled Automatic Power Save). The BACASS leads the DP (Doze Period) of U-APSD for improving energy efficiency by utilizing the PSNR based on content-aware and client buffer occupancy that is hinged on a network-aware streaming system using SVC. The simulation results demonstrate the effectiveness of the proposed streaming system.

Enhancing Breakdown Strength and Energy Storage Efficiency of Glass-Pb(Zr,Ti)O3 Composite Film (유리-PZT 혼합 후막의 절연 파괴 전압 및 에너지 저장 효율 향상)

  • Kim, Samjeong;Lim, Ji-Ho;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.31 no.10
    • /
    • pp.546-551
    • /
    • 2021
  • To improve ferroelectric properties of PZT, many studies have attempted to fabricate dense PZT films. The AD process has an advantage for forming dense ceramic films at room temperature without any additional heat treatment in low vacuum. Thick films coated by AD have a higher dielectric breakdown strength due to their higher density than those coated using conventional methods. To improve the breakdown strength, glass (SiO2-Al2O3-Y2O3, SAY) is mixed with PZT powder at various volume ratios (PZT-xSAY, x = 0, 5, 10 vol%) and coating films are produced on silicon wafers by AD method. Depending on the ratio of PZT to glass, dielectric breakdown strength and energy storage efficiency characteristics change. Mechanical impact in the AD process makes the SAY glass more viscous and fills the film densely. Compared to pure PZT film, PZT-SAY film shows an 87.5 % increase in breakdown strength and a 35.3 % increase in energy storage efficiency.

Spectrum Allocation and Service Control for Energy Saving Based on Large-Scale User Behavior Constraints in Heterogeneous Networks

  • Yang, Kun;Zhang, Xing;Wang, Shuo;Wang, Lin;Wang, Wenbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3529-3550
    • /
    • 2016
  • In heterogeneous networks (HetNets), energy saving is vital for a sustainable network development. Many techniques, such as spectrum allocation, network planning, etc., are used to improve the network energy efficiency (EE). In this paper, micro BSs utilizing cell range expansion (CRE) and spectrum allocation are considered in multi-channel heterogeneous networks to improve EE. Hotspot region is assumed to be covered by micro BSs which can ensure that the hotspot capacity is greater than the average demand of hotspot users. The expressions of network energy efficiency are derived under shared, orthogonal and hybrid subchannel allocation schemes, respectively. Particle swarm optimization (PSO) algorithm is used to solve the optimal ratio of subchannel allocation in orthogonal and hybrid schemes. Based on the results of the optimal analysis, we propose three service control strategies on the basis of large-scale user behaviors, i.e., adjust micro cell rang expansion (AmCRE), adjust micro BSs density (AmBD) and adjust micro BSs transmit power (AmBTP). Both theoretical and simulation results show that using shared subchannel allocation scheme in AmBD strategies can obtain maximal EE with a very small area ratio. Using orthogonal subchannel allocation scheme in AmCRE strategies can obtain maximal EE when area ratio is larger. Using hybrid subchannel allocation scheme in AmCRE strategies can obtain maximal EE when area ratio is large enough. No matter which service control strategy is used, orthogonal spectrum scheme can obtain the maximal hotspot user rates.

The Study on the Optimization of Burner and Heat Exchanger for Condensing Gas Boiler (응축 가스보일러의 연소기와 열교환기의 최적화 연구)

  • 박준규;이석희;정영식;이창언;금성민
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2000.04a
    • /
    • pp.201-207
    • /
    • 2000
  • This study was carried out to optimize burner and heat exchanger of the condensing gas boiler which can save energy by utilizing latent heat of combustion gas and reduce pollutant in exhaust gas. The heat exchanger of the gas boiler was composed of three parts, which were an upper. lower , and coil heat exchanger . The upper heat exchanger was placed outside of the premixed burner and a lower heat exchanger was located under the upper heat exchanger. And, coil heat exchanger rounded the outer surface of an upper and lower heat exchanger. The boiler designed by this research reaches turn-down ratio 4 : 1 in the domain of equivalence ratio 0.75-0.8 and thermal efficiency of 97% . Emission of NOx and CO concentration was under 20ppm and 140ppm at equivalence ratio 0.8 . When diameter of the burner replace 60mm by 50mm. emission of CO was reduced about 50ppm remarkably.

  • PDF