• Title/Summary/Keyword: energy production

Search Result 5,636, Processing Time 0.039 seconds

Technology Trend for Water Electrolysis Hydrogen Production by the Patent Analysis (특허분석에 의한 수전해 수소제조 기술동향)

  • Hwang, Gab-Jin;Kang, Kyung-Seok;Han, Hye-Jung;Kim, Jong-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.1
    • /
    • pp.95-108
    • /
    • 2007
  • There are several methods for the hydrogen production such as steam reforming of natural gas, photocatalytic method, biological method, electrolysis and thermochemical method, etc. These days it has been widely studying for the hydrogen production method having low hydrogen production cost and high efficiency. In this paper, patents in the hydrogen production by water electrolysis were gathered and analyzed. The search range was limited in the open patents of USA(US), European Union(EP), Japan(JP), and Korea(KR) from 1996 to 2005. Patents were gathered by using key-words searching and filtered by filtering criteria. The trends of the patents was analyzed by the years, countries, companies, and technologies.

The Preparation Characteristics of Hydrogen Permselective Membrane in IS Process of Nuclear Hydrogen Production (원자력 수소제조 IS 공정의 수소분리막 제조 특성)

  • Son, Hyo-Seok;Choe, Ho-Sang;Kim, Jeong-Min;Hwang, Gap-Jin;Park, Ju-Sik;Bae, Gi-Gwang
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2005.11a
    • /
    • pp.119-123
    • /
    • 2005
  • The thermochemical splitting of water has been proposed as a clean method for hydrogen production. The IS process is one of the thermochemical water splitting processes using iodine and sulfur as reaction agents. HI decomposition procedure to obtain hydrogen is one of the key operations in the process, because equilibrium conversion of HI is low (22% at $450^{\circ}C$). The silica membranes prepared by CVD. method were applied to the decomposition reaction of HI vapor. The permeation characteristics of hydrogen and nitrogen belong to the Knudsen flow pattern.

  • PDF

A STUDY OF A NUCLEAR HYDROGEN PRODUCTION DEMONSTRATION PLANT

  • Chang, Jong-Hwa;Kim, Yong-Wan;Lee, Ki-Young;Lee, Young-Woo;Lee, Won-Jae;Noh, Jae-Man;Kim, Min-Hwan;Lim, Hong-Sik;Shin, Young-Joon;Bae, Ki-Kwang;Jung, Kwang-Deog
    • Nuclear Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.111-122
    • /
    • 2007
  • The current energy supply system is burdened by environmental and supply problems. The concept of a hydrogen economy has been actively discussed worldwide. KAERI has set up a plan to demonstrate massive production of hydrogen using a VHTR by the early 2020s. The technological gap to meet this goal was identified during the past few years. The hydrogen production process, a process heat exchanger, the efficiency of an I/S thermochemical cycle, the manufacturing of components, the analysis tools of VHTR, and a coated particle fuel are key areas that require urgent development. Candidate NHDD plant designs based on a 200 MWth VHTR core and I/S thermochemical process have been studied and some of analysis results are presented in this paper.

Technology Characteristics of Hydrogen Production and Its Technology Trend by the Patent Analysis (수소제조 기술특성 및 특허분석에 의한 기술동향)

  • Choi, Jae-Ho;Rhee, Young-Woo;Kang, Kyung-Seok;Choi, Sang-Jin;Kim, Jong-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.4
    • /
    • pp.481-494
    • /
    • 2007
  • Hydrogen is clean and renewable and is recognized as a very promising energy to solve both depletion of petroleum resource and environmental problems caused by use of fossil fuels. Extensive researches have been performed worldwide on the production technologies of hydrogen. In this paper, characteristics of hydrogen production technologies were analyzed from the literature survey. Also, The technology trend of hydrogen production was scrutinized based on patent analysis. In patent analysis the search range was limited to the open patents issued from 1996 to 2005. Patents were gathered by using the key-words searching method and filtered by desirable filtering criteria. The technology trend of hydrogen production was discussed by classifying each patent based on the publishing year, country, and company, and the type of production technology.

Biological Hydrogen Production (바이오기술 이용 수소제조)

  • Kim Mi-Sun;Oh You-Kwan
    • Journal of Energy Engineering
    • /
    • v.15 no.2 s.46
    • /
    • pp.118-126
    • /
    • 2006
  • This publication provides an overview of the state-of-the-art and perspective of biological $H_2$ production from water and/or organic substances. The biological $H_2$ production processes, being explored in fundamental and applied researches, are direct and indirect biophotolysis from water, photo-fermentation, dark anaerobic fermentation and in vitro $H_2$ production. The development of biological $H_2$ production technology, as an energy carrier, started at the late 1940's in the lab-scale. Now it has a high priority in the world, especially USA, Japan, EU and Korea.

A Study on the Statistical Production Control of Energy Efficiency in Electric Product (전기제품 에너지 소비효율의 통계적 양산 관리 방법에 대한 연구)

  • Chun, Young-Ho;Kim, Seong-Don
    • Journal of the Korea Management Engineers Society
    • /
    • v.23 no.4
    • /
    • pp.73-86
    • /
    • 2018
  • Most electric products produced during the manufacturing process are produced after design and mass production under a given control standard. In particular, the development phase should present the criteria for the production process by setting appropriate limits based on the performance being targeted. Even if the standard of performance is set considering the performance of the process, measuring the performance of the product after actual production results will cause nonconformities with the expected results. Among the performance of electrical products, Energy standards represented by energy consumption efficiency continue to be of importance, and are mandatory standards that correspond to national standards in most countries. Therefore, statistical quality control of these standards shall basically have a large number of test equipment for each product, ensure sufficient test time and continuous sampling of product samples. In the end, companies that produce and sell electric appliances are striving to control mass production at a great cost, but this is not acceptable. This study presents basic characteristics of the energy efficiency of electrical products and proposes and conducts a case study on statistical production control methods for performance variation across products under the standards about domestic and international regulations.

Analyses on Techno-economic Aspects and Green Hydrogen Production Capability of MW-scale Low-temperature Water Electrolyzers in Jeju Island, South Korea (제주도 MW급 저온 수전해 수소 생산 시스템의 그린수소 생산 능력 및 경제성 분석 )

  • KOSAN ROH;YEONGJIN KIM;HONGJUN JEON;WOOHYUN KIM;HEESANG KO;KYOUNG SOO KANG;SEONG UK JEONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.3
    • /
    • pp.235-245
    • /
    • 2023
  • Techno-economic analyses on a 5-MW water electrolysis system for hydrogen production, operated in Jeju Island where the portion of renewable energy in the power grid is the highest in Korea, have been performed. The cost of hydrogen production and the economic feasibility of the hydrogen production system have been mainly analyzed based on the levelized-cost-of-hydrogen model. The effects of carbon emission trading and renewable power purchase method have been considered to reduce the cost of green hydrogen production in the case studies. This economic analysis model is expected to be used to derive a business model for green hydrogen production.

The Properties of the Several Metal Oxides in the Water-splitting for H2 Production (물 분해 수소제조를 위한 금속산화물들의 반응특성)

  • Son, Hyun-Myung;Park, Chu-Sik;Lee, Sang-Ho;Hwang, Gab-Jin;Kim, Jong-Won;Lee, Jin-Bae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.3
    • /
    • pp.268-275
    • /
    • 2003
  • The water-splitting process by the metal oxides using solar heat is one of the hydrogen production method. The hydrogen production process using the metal oxides (NiFe2O4/NiAl2O4,CoFe2O4/CoAl2O4, CoMnNiFerrite, CoMnSnFerrite, CoMnZnFerrite, CoSnZnFerrite) was carried out by two steps. The first step was carried out by the CH4-reduction to increase activation of metal oxides at operation temperature. And then, it was carried out the water-splitting reaction using the water at operation temperature for the second step. Hydrogen was produced in this step. The production rates of H2 were 110, 160, 72, 29, 17, $21m{\ell}/hr{\cdot}g-_{Metal\;Oxide}$ for NiFe2O4/NiAl2O4, CoFe2O4/CoAl2O4, CoMnNiFerrite, CoMnSnFerrite, CoMnZnFerrite, CoSnZnFerrite respectively in the second step. CoFe2O4/CoAl2O4 had higher H2 production rate than the other metal oxides.

Analysis on The Production Costs and Energy Balance of Heating Wood-Chip by Yarding Machines (집재기계에 따른 난방용 목재칩의 생산비용 및 에너지 수지분석)

  • Hwang, Jin-Sung;Oh, Jae-Heun;Kim, Joon-Soon;Cha, Du-Song
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.6
    • /
    • pp.799-805
    • /
    • 2009
  • To construct the production system of forest biomass as a small scale heating energy source, energy availability of wood-chip was examined by cost and energy balance analysis in the production process. The costs to produce wood-chip of 1 kg was calculated by yarding machines and their operational gradient conditions. As a result, 195.45~210.54 won/kg were required as production costs of wood-chip. Input energy rate (%) which is output to input energy in wood-chip production process were showed as 26.58~27.38%. Energy input rate by operational gradient was not significantly difference, and scenario B with tower yarder system appeared by more efficient than scenario A with tractor yarding system in opposition to production costs analysis.

Investigation of the hydrogen production of the PACER fusion blanket integrated with Fe-Cl thermochemical water splitting cycle

  • Medine Ozkaya;Adem Acir;Senay Yalcin
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4287-4294
    • /
    • 2023
  • In order to meet the energy demand, energy production must be done continuously. Hydrogen seems to be the best alternative for this energy production, because it is both an environmentally friendly and renewable energy source. In this study, the hydrogen fuel production of the peaceful nuclear explosives (PACER) fusion blanket as the energy source integrated with Fe-Cl thermochemical water splitting cycle have been investigated. Firstly, neutronic analyzes of the PACER fusion blanket were performed. Necessary neutronic studies were performed in the Monte Carlo calculation method. Molten salt fuel has been considered mole-fractions of heavy metal salt (ThF4, UF4 and ThF4+UF4) by 2, 6 and 12 mol. % with Flibe as the main constituent. Secondly, potential of the hydrogen fuel production as a result of the neutronic evaluations of the PACER fusion blanket integrated with Fe-Cl thermochemical cycle have been performed. In these calculations, tritium breeding (TBR), energy multiplication factor (M), thermal power ratio (1 - 𝜓), total thermal power (Phpf) and mass flow rate of hydrogen (ṁH2) have been computed. As a results, the amount of the hydrogen production (ṁH2) have been obtained in the range of 232.24x106 kg/year and 345.79 x106 kg/year for the all mole-fractions of heavy metal salts using in the blanket.