• Title/Summary/Keyword: energy production

Search Result 5,641, Processing Time 0.03 seconds

Is there a causal effect between agricultural production and carbon dioxide emissions in Ghana?

  • Owusu, Phebe Asantewaa;Asumadu-Sarkodie, Samuel
    • Environmental Engineering Research
    • /
    • v.22 no.1
    • /
    • pp.40-54
    • /
    • 2017
  • According to FAO, "agricultural sectors are particularly exposed to the effects of climate change and increases climate variability". As a result, the study makes an attempt to answer the question: Is there a causal effect between agricultural production and carbon dioxide emissions in Ghana? By employing a time series data spanning from 1960 to 2015 using the Autoregressive Distributed Lag method. There was evidence of a long-run equilibrium relationship running from copra production, corn production, green coffee production, milled rice production, millet production, palm kernel production and sorghum production to carbon dioxide emissions. The short-run equilibrium relationship shows that, a 1% increase in copra and green coffee production will increase carbon dioxide emissions by 0.22% and 0.03%, a 1% increase in millet and sorghum production will decrease carbon dioxide emissions by 0.13% and 0.11% in the short-run while a 31% of future fluctuations in carbon dioxide emissions are due to shocks in corn production. There was bidirectional causality between milled rice production and carbon dioxide emissions, millet production and carbon dioxide emissions and, sorghum production and carbon dioxide emissions; and a unidirectional causality running from corn production to carbon dioxide emissions and carbon dioxide emissions to palm kernel production.

Development of Transportation Bio-energy and Its Future (수송용 바이오에너지 개발과 미래)

  • Chung, Jay-H.;Kwon, Gi-Seok;Jang, Han-Su
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • Negative environmental consequences of fossil fuels and the concerns about their soaring prices have spurred the search for alternative energy sources. While other alternative energies-like solar, wind, geothermal, hydroelectric, and tidal-offer viable options for electricity generation, around 40% of total energy consumption requires liquid fuels like gasoline or diesel fuel. This is where bio-energy/biofuels is especially attractive, where they can serve as a practical alternative to oil. The production of liquid biofuels for transportation will depend upon a stable supply of large amount of inexpensive cellulosic biomass obtained on a sustainable basis. This paper reviewed development status of transportation bio-energy for vehicles, technical barriers to the production of cellulosic ethanol, and the global future of bio-diesel and ethanol production.

Evaluation of the Performance on WindPRO Prediction (WindPRO의 예측성능 평가)

  • O, Hyeon-Seok;Go, Gyeong-Nam;Heo, Jong-Cheol
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.300-305
    • /
    • 2008
  • Using WindPRO that was software for windfarm design developed by EMD from Denmark, wind resources for the western Jeju island were analyzed, and the performance of WindPRO prediction was evaluated in detail. The Hansu site and the Yongdang site that were located in coastal region were selected, and wind data for one year at the two sites were analyzed using WindPRO. As a result, the relative error of the Prediction for annual energy Production and capacity factor was about ${\pm}20%$. For evaluating wind energy more accurately, it is necessary to obtain lots of wind data and real electric power production data from real windfarm.

  • PDF

A Study on the Effective Methods of Using Agricultural Resources Aimed to Facilitate Sustainable Agriculture (지속가능한 농업을 위한 농업자원의 유효이용 방안 -기후변화협약에 따른 영향 및 대책-)

  • 윤성이
    • Korean Journal of Organic Agriculture
    • /
    • v.9 no.3
    • /
    • pp.23-44
    • /
    • 2001
  • To address complex solutions to tack1e the cost rise with the increasing of the prices of crude oil, and to lower warming gas discharge in agricultural sector in line with the framework Convention on Climate Change, we need to net only develop the methods of simply reducing energy use ratio, but also effectively energize resources discharged in the course of agricultural production aimed at enabling repealed farming, and develop systems to reinvest such energy into agricultural production and apply them to actual farming. To that end, specifically, we need to reduce the energy cost in agricultural production, and produce and harness bio gas that makes it possible to stabilize the continued supply of energy. Thus, in this research, we seek to discuss energy use volume and warming gas discharge, and the characteristics of bio gas and its use methods alike, in agricultural sector, and thus present methods for environment-friendly and continual development in agriculture.

  • PDF

Production and Present Status of Photovoltaic Modules in Korea (국내 태양전지모듈 제조기술 및 보급 현황)

  • Kang, Gi-Hwan;Kim, Hyun-Il;Park, Kyung-Eun;Park, I-Jun;Yu, Gwon-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1762-1764
    • /
    • 2005
  • This paper presents manufacturing techniques and distribution status of photovoltaic(PV) module for the success of domestic PV industries. The domestic PV production facilities were about 21MW at the end of 2004. Now it is about 51MW. By 2005 a increase of production facilities expect approximately 70$\sim$80MW. Also domestic PV cumulated installations up to 2004 was about 9,358kW and in 2004 PV system installed around 2,921kW which was increased about 2.8 times compared with last year.

  • PDF

Current Situation of Renewable Energy Resources Marketing and its Challenges in Light of Saudi Vision 2030 Case Study: Northern Border Region

  • AL-Ghaswyneh, Odai Falah Mohammad
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.89-94
    • /
    • 2022
  • The Saudi Vision 2030 defined the directions of the national economy and market towards diversifying sources of income, and developing energy to become less dependent on oil. The study sought through a theoretical review to identify the reality of the energy sector and the areas of investment available in the field of renewable energy. Findings showed that investment in the renewable energy sector is a promising source according to solar, wind, hydrogen, geothermal energy and burning waste than landfill to extract biogas for less emission. The renewable energy sector faces challenges related to technology, production cost, price, quantity of production and consumption, and markets. The study revealed some recommendations providing and suggested electronic marketing system to provide investors and consumers with energy available from renewable sources.

Design and Exergy Analysis for a Combined Cycle using LNG Cold/Hot Energy (액화천연가스 냉온열을 이용한 복합사이클의 설계 및 엑서지 해석)

  • Lee Geun Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.4
    • /
    • pp.285-296
    • /
    • 2005
  • In order to reduce the compression power and to use the overall energy contained in LNG effectively, a combined cycle is devised and simulated. The combined cycle is composed of two cycles; one is an open cycle of liquid/solid carbon dioxide production cycle utilizing LNG cold energy in $CO_2$ condenser and the other is a closed cycle gas turbine which supplies power to the $CO_2$ cycle, utilizes LNG cold energy for lowering the compressor inlet temperature, and uses the heating value of LNG at the burner. The power consumed for the $CO_2$ cycle is investigated in terms of a production ratio of solid $CO_2$. The present study shows that much reduction in both $CO_2$ compression power (only $35\%$ of power used in conventional dry ice production cycle) and $CO_2$ condenser pressure could be achieved by utilizing LNG cold energy and that high cycle efficiency ($55.3\%$ at maximum power condition) in the gas turbine could be accomplished with the adoption of compressor inlet cooling and regenerator. Exergy analysis shows that irreversibility in the combined cycle increases linearly as a production ratio of solid $CO_2$ increases and most of the irreversibility occurs in the condenser and the heat exchanger for compressor inlet cooling. Hence, incoming LNG cold energy to the above components should be used more effectively.

Two-Step Thermochemical Cycle with Supported $NiFe_2O_4$ for Hydrogen Production (지지체의 변화에 따른 Ni-페라이트의 2단계 열화학 사이클 반응 특성에 관한 연구)

  • Kim, Woo-Jin;Kang, Kyoung-Soo;Kim, Chang-Hee;Choi, Won-Chul;Kang, Yong;Park, Chu-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.6
    • /
    • pp.505-513
    • /
    • 2008
  • The two-step thermochemical cycle was examined on the $CeO_2$, YSZ, and $ZrO_2$-supported $NiFe_2O_4$ to investigate the effects of support material addition. The supported $NiFe_2O_4$ was prepared by the aerial oxidation method. Thermal reduction was conducted at 1573K and 1523K while water-splitting was carried out at 1073K. Supporting $NiFe_2O_4$ on $CeO_2$, YSZ and $ZrO_2$ alleviated the high-temperature sintering of iron-oxide. As a result, the supported $NiFe_2O_4$ exhibited greater reactivity and repeatability in the water-splitting cycle as compared to the unsupported $NiFe_2O_4$. Especially, $ZrO_2$-supported $NiFe_2O_4$ showed better sintering inhibition effect than other supporting materials, but hydrogen production amount was decreased as cycle repeated. In case of $CeO_2$-supported $NiFe_2O_4$, improvement of hydrogen production was found when the thermal reduction was conducted at 1573K. It was deduced that redox reaction of $CeO_2$ activated above 1573K.

Evaluation of Technical Production Efficiency and Business Structure of Domestic Combined Heat and Power (CHP) Operators: Panel Stochastic Frontier Model Analysis for 16 Collective Energy Operators (국내 열병합발전사업의 기술적 생산효율성 추정 및 사업구조 평가: 16개 집단에너지사업자에 대한 패널 확률프론티어모형(SFA) 분석)

  • Lim, Hyungwoo;Kim, Jaehyeok;Shin, Donghyun
    • Environmental and Resource Economics Review
    • /
    • v.30 no.4
    • /
    • pp.557-579
    • /
    • 2021
  • Collective energy is an intermediate stage in energy conversion and has a great influence on the power structure as a distributed power source. However, the problem of the collective energy business has recently emerged due to the worsening profitability of some collective energy operators. This study measured the technical efficiency of major operators through the estimation of the production efficiency of Korean collective energy operators, and based on this, we looked at ways to improve the profit structure of operators. After collecting detailed data from 16 collective energy operators between 2016 and 2019, the production efficiency of operators was estimated using the panel stochastic frontier model. As a result of the estimation, combined steam power operators showed the highest production efficiency and reverse CHP operators showed the lowest efficiency. Furthermore, as a result of examining the factors influencing profitability, it was confirmed that production efficiency has a positive effect on overall profitability. However, businesses with a high proportion of heat production, such as small district electricity operators, profitability was lower. This phenomenon is due to the structural limitations of the current heat sales market. Hence, the adjustment of the heat sales unit price is necessary to improve profitability of collective energy operators.

Development of Industrial Load Control Algorithm for Factory Energy Management System (F-EMS) under Real Time Pricing Environment (실시간요금제하에서 산업용 수용가의 부하제어알고리즘 개발)

  • Jeon, Jeong-Pyo;Jang, Sung-Il;Kim, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.12
    • /
    • pp.1627-1636
    • /
    • 2014
  • In real-time electricity price environment, the energy management system can provide the significant advantage to the residential, commercial and industrial customers since it can reduce the electricity charge by controlling the load operation effectively in response to time-varying price. However, the earlier studies for load management mainly focus on the residential and commercial customers except for the industrial customers because most of load operations in industrial sector are intimately related with production schedule. So, it is possible that the inappropriate control of loads in industrial sector causes huge economic loss. In this paper, therefore, we propose load control algorithm for factory energy management system(F-EMS) to achieve not only minimizing the electricity charges but also maintaining production efficiency by considering characteristics of load operation and production schedule. Considering characteristics of load operation and production schedule, the proposed load control algorithm can reflect the various characteristics of specific industrial customer and control their loads within the range that the production efficiency is maintained. Simulation results show that the proposed load control algorithm for F-EMS leads to significant reduction in the electricity charges and peak power in industrial sector.