• Title/Summary/Keyword: energy piles

Search Result 79, Processing Time 0.029 seconds

Optimization of Fugitive Dust Control System for Meteorological Conditions (기상조건별 비산먼지 관리체계 최적화 연구)

  • Kim Hyun-Goo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.6
    • /
    • pp.573-583
    • /
    • 2005
  • Fugitive dust, which is emitted in the ambient air without first passing through a stack or duct designed to control flow, is frequently generated by means of wind erosion from storage yards at Pohang Steel Wokrs. The size distribution of fugitive dust is mostly in the range of coarse particulate which is deposited as soon as emitted and less harm to human health; however $20\%$ of fugitive dust contains PM 10 known as one of most harmful airborne pollutant. Consequently, effective control and reduction of fugitive dust is strongly requested by the local society, but it is not easy so far because the generation and dispersion of fugitive dust highly depends on meteorological conditions, and it being occurred for irregularity. This research presented a fugitive dust control system for each meteorological condition by providing statistical prediction data obtained from a statistical analysis on the probability of generating the threshold velocity at which the fugitive dust begins to occur, and the frequency occurring by season and by time of the wind direction that can generate atmospheric pollution when the dispersed dust spreads to adjacent residential areas. The research also built a fugitive dust detection system which monitors the weather conditions surrounding storage yards and the changes in air quality on a real-time basis and issues a warning message by identifying a situation where the fugitive dust disperses outside the site boundary line so that appropriate measures can be taken on a timely basis. Furthermore, in respect to the spraying of water to prevent the generation of fugitive dust from the storage piles at the storage yard, an advanced statistical meteorological analysis on the weather conditions in Pohang area and a case study of fugitive dust dispersion toward outside of working field during $2002\∼2003$ were carried out in order to decide an optimal water-spraying time and the number of spraying that can prevent the origin of fugitive dust emission. The results of this research are expected to create extremely significant effects in improving surrounding environment through actual reduction of the fugitive dust produced from the storage yard of Pohang Steel Works by providing a high-tech warning system capable of constantly monitoring the leakage of fugitive dust and water-spray guidance that can maximize the water-spraying effects.

Static impedance functions for monopiles supporting offshore wind turbines in nonhomogeneous soils-emphasis on soil/monopile interface characteristics

  • Abed, Younes;Bouzid, Djillali Amar;Bhattacharya, Subhamoy;Aissa, Mohammed H.
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1143-1179
    • /
    • 2016
  • Offshore wind turbines are considered as a fundamental part to develop substantial, alternative energy sources. In this highly flexible structures, monopiles are usually used as support foundations. Since the monopiles are large diameter (3.5 to 7 m) deep foundations, they result in extremely stiff short monopiles where the slenderness (length to diameter) may range between 5 and 10. Consequently, their elastic deformation patterns under lateral loading differ from those of small diameter monopiles usually employed for supporting structures in offshore oil and gas industry. For this reason, design recommendations (API and DNV) are not appropriate for designing foundations for offshore wind turbine structures as they have been established on the basis of full-scale load tests on long, slender and flexible piles. Furthermore, as these facilities are very sensitive to rotations and dynamic changes in the soil-pile system, the accurate prediction of monopile head displacement and rotation constitutes a design criterion of paramount importance. In this paper, the Fourier Series Aided Finite Element Method (FSAFEM) is employed for the determination of static impedance functions of monopiles for OWT subjected to horizontal force and/or to an overturning moment, where a non-homogeneous soil profile has been considered. On the basis of an extensive parametric study, and in order to address the problem of head stiffness of short monopiles, approximate analytical formulae are obtained for lateral stiffness $K_L$, rotational stiffness $K_R$ and cross coupling stiffness $K_{LR}$ for both rough and smooth interfaces. Theses expressions which depend only on the values of the monopile slenderness $L/D_p$ rather than the relative soil/monopile rigidity $E_p/E_s$ usually found in the offshore platforms designing codes (DNV code for example) have been incorporated in the expressions of the OWT natural frequency of four wind farm sites. Excellent agreement has been found between the computed and the measured natural frequencies.

Effect of thermal regime on the seismic response of a dry bridge in a permafrost region along the Qinghai-Tibet Railway

  • Zhang, Xiyin;Zhang, Mingyi;Chen, Xingchong;Li, Shuangyang;Niu, Fujun
    • Earthquakes and Structures
    • /
    • v.13 no.5
    • /
    • pp.429-442
    • /
    • 2017
  • Dry bridges have been widely applied in the Qinghai-Tibet Railway (QTR) to minimize the thermal disturbance of engineering to the permafrost. However, because the Qinghai-Tibet Plateau is an area with a high potential occurrence of earthquakes, seismic action can easily destroy the dry bridges. Therefore, a three-dimensional numerical model, with consideration of the soil-pile interactions, is established to investigate the thermal characteristics and their impact on the seismic response of the dry bridge in permafrost region along the QTR. The numerical results indicate that there exist significant differences in the lateral displacement, shear force, and bending moment of the piles in different thermal conditions under seismic action. When the active layer become from unfrozen to frozen state, the maximum displacement of the bridge pile reduces, and the locations of the zero and peak values of the shear force and bending moment also change. It is found that although the higher stiffness of frozen soil confines the lateral displacement of the pile, compared with unfrozen soil, it has an adverse effect on the earthquake energy dissipation capacity.

Comparison of Underwater Drop Characteristics for Hazard Apparatuses on Subsea Cable Using Fluid-Structure Interaction Analysis (유체-구조 연성해석 기반 해저케이블 위해인자의 수중낙하 특성 비교)

  • Jang, Gyung-Ho;Kim, Jeong-Hun;Song, Chang Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.324-332
    • /
    • 2018
  • It is known that damages to the subsea cables used for electric power transmission between islands and countries, including renewable energy from offshore wind power, current, tides, etc., cost much to restore, which causes social and economic losses. Various types of fishing rigs and anchors have been reported to be the greatest hazards to subsea cables. It is possible to design and construct a suitable protection facility for a subsea cable by precisely estimating the underwater behavior of such hazardous apparatuses. In this study, numerical simulations of the underwater behaviors of various hazardous apparatuses were carried out using fluid-structure interaction (FSI) analysis as a basic study to simulate the actual behavior phenomena of hazardous apparatuses in relation to a subsea cable. In addition, the underwater drop characteristics according to the types of hazardous apparatuses were compared. In order to verify the accuracy of the FSI analysis method used in this study, we compared the test results for underwater drops of a steel ball bearing. Stock anchors, stockless anchors, and rocket piles, which were actually reported to be the cases of damage to subsea cables along the southwest coast of Korea, were considered as the hazardous apparatuses for the numerical simulations. Each hazardous apparatus was generated by a Lagrangian model and coupled with the fluid domain idealized by the Eulerian equation to construct the three-dimensional FSI analysis model. The accuracy of the numerical simulation results was verified by comparing them with the analytical solutions, and the underwater drop characteristics according to the types of hazard apparatuses were compared.

Study on critical buckling load calculation method of piles considering passive and active earth pressure

  • Chen, Yong-Hui;Chen, Long;Xu, Kai;Liu, Lin;Ng, Charles W.W.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.3
    • /
    • pp.367-382
    • /
    • 2013
  • Different types of long slender pile shall buckle with weak soil and liquefied stratum surrounded. Different from considering single side earth pressure, it was suggested that the lateral earth pressure can be divided into two categories while buckling: the earth pressure that prevent and promotes the lateral movement. Active and passive earth pressure calculation model was proposed supposing earth pressure changed linearly with displacement considering overlying load, shaft resistance, earth pressure at both sides of the pile. Critical buckling load calculation method was proposed based on the principle of minimum potential energy quoting the earth pressure calculation model. The calculation result was contrasted with the field test result of small diameter TC pile (Plastic Tube Cast-in-place pile). The fix form could be fixed-hinged in the actual calculation assuring the accuracy and certain safety factor. The contributions of pile fix form depend on the pile length for the same geological conditions. There exists critical friction value in specific geological conditions that the side friction has larger impact on the critical buckling load while it is less than the value and has less impact with larger value. The buckling load was not simply changed linearly with friction. The buckling load decreases with increased limit active displacement and the load tend to be constant with larger active displacement value; the critical buckling load will be the same for different fix form for the small values.

Lateral Behavior of Single Rigid Driven Pile in Non-Homogeneous Sand (비균질 지반에서 항타 관입한 단일 강성말뚝의 수평거동 연구)

  • 김영수;김병탁
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.167-185
    • /
    • 1999
  • A series of model tests was performed to find the characteristics of lateral behavior of single rigid pile. This paper shows the results of model tests on the lateral behavior of single rigid driven pile in non-homogeneous(two layered) Nak-Dong River sands. The purpose of this paper is to investigate the effect of the ratio of lower layer thickness to embedded pile length, the coefficient ratio of the subgrade reaction and the pile construction conditions(driven & embedded piles) on the characteristics of lateral behavior of single pile. The results of model tests show that the lateral behavior in non-homogeneous soil depends upon drop energy considerably, that is, in the case of H/L=0.75, as the drop energy increases three times the decrease percentage increases about 2.12 times. In the driven pile with non-homogeneous soil of $E_{h1}/E_{h2}=5.56$, the effect of upper layer with large stiffness on the decrease of lateral deflection is remarkably smaller than embedded pile. In non-homogeneous soil, the maximum bending moment of driven pile is in the range of 100 132% in comparison with embedded pile. The reason is that the stiffness of soil around pile increases with drop vibration and so the pile behavior is similar to the flexible pile behavior by means of the increase of relative stiffness of pile, In this paper, the experimental equations for lateral load and H/L on $y_D/y_E \; & \; MBM_D/MBM_E$ are suggested from model tests.

  • PDF

Analysis of Scour Phenomenon around Offshore Wind Foundation using Flow-3D Model (Flow-3D 모형을 이용한 해상풍력기초 세굴현상 분석)

  • Park, Young-Jin;Kim, Tae-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.690-696
    • /
    • 2017
  • Various types of alternative energy sources to petroleum are being developed both domestically and internationally as clean energy that does not emit greenhouse gases. In particular, offshore wind power has been studied because the wind resources are relatively limitless and the wind power is relatively smaller than onshore. In this study, to analyze the scour phenomenon around offshore wind foundations, mono pile and tripod pile foundations were simulated using a FLOW-3D model. The scour phenomenon was evaluated for mono piles: one is a pile with a 5 m diameter and d=1.69 m and the other is a pile with a 5 m diameter. Numerical analysis showed that in the latter, the falling-flow increased and the maximum scour depth occurred more than 1.7 times. For a tripod pile foundation, the measured velocity and the maximum wave condition were applied to the upstream boundary condition, respectively, and the scour phenomenon was evaluated. When the maximum wave condition was applied, the maximum scour depth occurred more than about 1.3 times. When the LES model was applied, the scour depth reached equilibrium, whereas the numerical results of the RNG model show that the scour phenomenon occurred in the entire boundary area and the scour depth did not reach equilibrium. To evaluate the scour phenomenon around offshore wind foundations, it is reasonable to apply the wave condition and the LES turbulence model to numerical model applications.

A Study on the Engineering Behaviour of Prebored and Precast Steel Pipe Piles from Full-Scale Field Tests and Finite Element Analysis (실규모 현장시험 및 유한요소해석을 통한 강관매입말뚝의 공학적 거동에 대한 연구)

  • Kim, Jeong-Sub;Jung, Gyoung-Ja;Jeong, Sang-Seom;Jeon, Young-Jin;Lee, Cheol-Ju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.4
    • /
    • pp.5-16
    • /
    • 2018
  • In the current study, the engineering behaviour of prebored and precast steel pipe piles was examined from a series of full-scale field measurements by conducting static pile load tests, dynamic pile load tests (EOID and restrike tests) and Class-A and Class-C1 type numerical analysis. The study includes the pile load - settlement relations, allowable pile capacity and shear stress transfer mechanism. Compared to the allowable pile capacity obtained from the static pile load tests, the dynamic pile load tests and the numerical simulation showed surprisingly large variations. Overall among these the restrike tests displayed the best results, however the reliability of the predictions from the numerical analysis was lower than those estimated from the dynamic pile load tests. The allowable pile capacity obtained from the EOID tests and the restrike tests indicated 20.0%-181.0% (avg: 69.3%) and 48.2%-181.1% (avg: 92.1%) of the corresponding measured values from the static pile loading tests, respectively. Furthermore, the computed results from the Class-A type analysis showed the largest scatters (37.1%-210.5%, avg: 121.2%). In the EOID tests, a majority of the external load were carried by the end bearing pile capacity, however, similar skin friction and end bearing capacity in magnitude were mobilised in the restrike tests. The measured end bearing pile capacity from the restrike tests were smaller than was measured from the EOID tests. The present study has revealed that if the impact energy is not sufficient in a restrike test, the end bearing pile capacity most likely will be underestimated. The shear stresses computed from the numerical analysis deviated substantially from the measured pile force distributions. It can be concluded that the engineering behaviour of the pile is heavily affected if a slime layer exists near the pile tip, and that the smaller the stiffness of the slime and the thicker the slime, the greater the settlement of the pile.

Behavior of Monopile for Offshore Wind Turbine in Loose Silty Sand under Lateral Cyclic Loading via Centrifuge Model Test (원심모형실험을 활용한 느슨한 실트질 모래지반에서 해상풍력 모노파일의 반복수평하중에 대한 거동 평가)

  • Lee, Jae-Kweon;Yun, Sung-Min;Jeon, Young-Jin;Kim, Jae-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.33-47
    • /
    • 2024
  • Offshore wind structures are subject to long-term repeated horizontal loads from wind, waves, and currents, making it essential to consider these loads in the design of offshore foundations. In this respect, monopiles are large-diameter hollow steel pipes that are relatively simple to construct compared with piles used on onshore sites. They can provide stable support for wind structures and have well-established design codes, leading to their widespread use globally. The behavior of monopiles under lateral static loads is typically assessed using the p-y method proposed by the American Petroleum Institute (API). However, the applicability of p-y curves to large-diameter monopiles exposed to repeated cyclic horizontal loads, such as those experienced in offshore wind applications, must yet be evaluated. Thus, this study evaluated the behavior of monopiles under two-way cyclic horizontal loads in loose silty sand, a representative soil type of the southwestern coast of Korea, using centrifuge model tests. The results demostrated that the behavior of monopiles varied depending on the loading level, number of cycles, and direction of the cyclic loads. Furthermore, the p-y curve method proposed by the API overestimated the behavior of a large-diameter monopile installed in silty sand under two-way cyclic loads.