• Title/Summary/Keyword: energy performance evaluation

Search Result 1,884, Processing Time 0.027 seconds

Evaluation of Electrochemical Stability of Graphite Current Collector for Electric Double Layer Capacitor Based on Acid Electrolyte (산성 전해질 기반의 전기 이중층 커패시터용 흑연 집전체의 전기화학적 안정성 평가)

  • Park, Sijin;An, Geon-Hyoung
    • Korean Journal of Materials Research
    • /
    • v.31 no.5
    • /
    • pp.272-277
    • /
    • 2021
  • Owing to its low cost, easy fabrication process, and good ionic properties, aqueous supercapacitors are under strong consideration as next-generation energy storage devices. However, the limitation of the current collector is its poor electrochemical stability, leading to low energy storage performance. Therefore, a reasonable design of the current collector and the acidic electrolyte is a necessary, as well as interfacial engineering to enhance the electrochemical performance. In the present study, graphite foil, with excellent electrochemical stability and good electrical properties, is suggested as a current collector of aqueous supercapacitors. This strategy results in excellent electrochemical performance, including a high specific capacitance of 215 F g-1 at a current density of 0.1 A g-1, a superior high-rate performance (104 F g-1 at a current density of 20.0 A g-1), and a remarkable cycling stability of 98 % at a current density of 10.0 A g-1 after 9,000 cycles. The superior energy storage performance is mainly ascribed to the improved ionic diffusion ability during cycling.

Evaluation of Operational Performance and Carbon Emissions for the Feasibility of Air Source Heat Pump Application in Residential Buildings (공동주택의 공기열원 히트펌프 적용가능성 검토를 위한 운전성능 및 탄소배출량 평가)

  • Junseok Kim;Jongsoo Kim;Yongseok Jeon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.20 no.2
    • /
    • pp.24-36
    • /
    • 2024
  • This study analyzed the feasibility of the air source heat pump in residential buildings based on operational performance and carbon emissions. The operational performance and carbon emissions were compared between a gas boiler and an air source heat pump by calculating the annual heating and hot water load based on the 21A and 36A models for actual residential buildings. For the operational performance of the air source heat pump, the lowest (2.3) and highest COP (5.9) were attained during the winter and summer seasons, respectively. The carbon emissions depend on the amount of energy consumed during operations. An air source heat pump consumed 65.10% and 65.4% less energy per year in the 21A and 36A models, respectively compared to the existing gas boiler. Consequently, for air source heat pump carbon emissions were also reduced by 13.3% and 15.1% per year for the 21A and 36A models, respectively. It shows the effectiveness of applying an air source heat pump compared to an existing gas boiler.

Characteristic Analysis and Implementation of 30kW Portable Test Equipment for Performance Evaluation in Energy Storage System (30kW급 ESS용 이동형 성능평가 시험장치의 구현 및 특성분석)

  • Park, Jea-Bum;Kim, Mi-Sung;Rho, Dae-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.6
    • /
    • pp.715-723
    • /
    • 2018
  • The energy storage system consists of batteries, power conditioning system and energy management system. If ESS is installed and operated in the field, SAT(Site Acceptance Test) of ESS is being essentially required for the safety and performance of ESS. Furthermore, in order to more accurately and reliably validate the performance of the ESS in advanced countries, it has been required to perform not only performance testing by H/W equipments but also performance verification by S/W tool. Therefore, this paper proposes the modeling of portable test equipment in order to evaluate the performance and reliability of ESS by using the PSCAD/EMTDC S/W. And also, the prototype of 30[kW] scaled portable test equipments is implemented based on the S/W modeling. From the results of various simulations and testings such as power quality, LVRT and anti-islanding tests, it is confirmed that 30[kW] scaled portable test equipment is useful for SAT of ESS, because the simulation results of PSCAD/EMTDC are identical to them of 30[kW] test equipment at the same test conditions.

Multi-Family Housing Block Design Strategy Development by BIM-based Energy Performance Analysis - focusing on the Block Types and the Variations in Stories - (BIM 기반 에너지성능분석을 통한 공동주택의 주동 설계 전략개발 - 주동타입 및 층수 변화를 중심으로 -)

  • Jun, Jae-Hong;Park, hye-Jin;Lee, Kweon-Hyung;Choo, Seoung-Yeon
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.2
    • /
    • pp.3-11
    • /
    • 2018
  • Korea has achieved a rapid economic development and with the increase in population and national income and the expansion of social and economic activities, energy consumption has rapidly increased too. Energy consumption per head has constantly increased and currently, power consumption per head is 7.5 times bigger than in 1985. Buildings occupy 25% of total energy consumption and especially, 50% of total energy is consumed for heating and cooling. In this situation, multi-family housing, which has constantly been increased, has an energy saving rate of 1.9%, which is the lowest level and this makes the government's energy policy for sustainable energy system development useless. Besides, energy consumption leads to secondary problems, such as air, water and marine pollution and heat pollution and wastewater/drainage and the increased use of fossil fuel is a fundamental reason for ozone layer destruction and global warming. Therefore, efficient energy consumption plans are required. This study aims to analyze energy performance in each block type of high-rise and diversified multi-family housing that accounts for 60% of all the housing forms, depending on the variations in stories through BIM-based energy simulation. For this study, four representative block types were selected, based on the multi-family floor plan, which is certified for energy performance evaluation and they were applied to the floor plan of a multi-family house that is scheduled to be built. Then BIM modeling was conducted from the fifth story to the 40th story at an intervals of 5 stories and based on the finding, energy characteristics of each block type and energy performance depending on the variations in stories were analyzed. It is considered that this would serve as objective data for block type and block story decision of energy performance-based multi-family housing.

A Study on the Geothermal Heat Pump System Performance Analysis according to Water Flow Rate Control of the Geothermal Water Circulation Pump (지열순환펌프 유량변화에 따른 지열히트펌프시스템의 에너지 성능 평가)

  • Jung, Young-Ju;Jo, Jae-Hun;Kim, Yong-Shik;Cho, Young-Hum
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.103-109
    • /
    • 2014
  • It is important to control the amount of supply water flow rate at all kinds of HVAC systems in order to maintain IAQ and energy efficiency. The most of buildings installed geothermal heat pumps is using fixed water flow rate in spite of the excellent performance of geothermal heat pumps. Especially when the air-conditioning load is low, the flow rate control may be possible to save energy to operate. However, it is effective to apply the variable flow control system in order to reduce energy consumption. Therefore, the purpose of this study, change a water flow rate and improve the whole performance of the geothermal heat pump. Geothermal heat pump system is modeled after the selection of the applied building, by setting the flow rate control to be analyzed through a simulation of performance evaluation. Building energy saving according to the flow rate of the ground circulating water analyze quantitatively and to investigate the importance of the flow control.

Seismic evaluation of existing RC frames with wide beams using an energy-based approach

  • Benavent-Climent, A.;Zahran, R.
    • Earthquakes and Structures
    • /
    • v.1 no.1
    • /
    • pp.93-108
    • /
    • 2010
  • This paper investigates the seismic performance of existing reinforced concrete frames with wide beams mainly designed for gravity loads, as typically found in the seismic-prone Mediterranean area before the introduction of modern codes. The seismic capacity is evaluated in terms of the overall amount of input energy that the frame can dissipate/absorb up to collapse. This approach provides a quantitative evaluation that can be useful for selecting and designing an appropriate retrofit strategy. Six prototype frames representative of past construction practices in the southern part of Spain are designed, and the corresponding non-linear numerical models are developed and calibrated with purposely conducted tests on wide beam-column subassemblages. The models are subjected to sixteen earthquake records until collapse by applying the incremental dynamic analysis method. It is found that the ultimate energy dissipation capacity at the story level is markedly low (about 1.36 times the product of the lateral yield strength and yield displacement of the story), giving values for the maximum amount of energy that the frame can dissipate which are from one fourth to half of that required in moderate-seismicity regions.

Development of Distributed Micro Gas Turbine(MGT) Technology by using Swine BID-ENERGY (축산폐기물 BIO-ENERGY를 이용한 분산형 마이크로 가스터빈 발전기술 개발)

  • Hur Kwang-beom;Park Jung-Keuk;Lee Jung-bin;Rhim Sang-gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.463-466
    • /
    • 2005
  • As the distributed generation becomes more reliable and economically feasible, it is expected that a higher application of the distributed generation units would be interconnected to the existing grids. This new generation technology is linked to a large number of factors like economics and performance, safety and reliability, market regulations, environmental issues, or grid connection constrains. KEPOD (Korea Electric Power Corporation) is performing the project to develope the Distributed Micro Gas Turbine (MGT) technologies by using Swine BID-ENERGY. This paper describes the plans and strategies for the renewable energy of MGT on actual grid-connection under Korean situations. KEPOD also, has a research plan on bio-gas pretreatment system applicable to our domestic swine renewable resources and is performing concept design of pilot plant to test grid operation. In addition, this testing will be conducted in order to respond to a wide variety of needs for application and economic evaluation in the field of On-site generation.

  • PDF

Evaluation on Cooling Performance of Ground Source Heat Pump System Equipped with Steel-pipe Civil Structures (강관 토목구조물이 설치된 지열 히트펌프 시스템의 냉방 성능 평가)

  • Seokjae Lee;Jeonghun Yang;Hangseok Choi
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.3
    • /
    • pp.14-22
    • /
    • 2023
  • Steel-pipe civil structures, including steel-pipe energy piles and cast-in-place piles (CIPs), utilize steel pipes as their primary reinforcements. These steel pipes facilitate the circulation of a working fluid through their annular crosssection, enabling heat exchange with the surrounding ground formation. In this study, the cooling performance of a ground source heat pump (GSHP) system that incorporated steel-pipe civil structures was investigated to assess their applicability. First of all, the thermal performance test was conducted with steel-pipe CIPs to evaluate the average heat exchange amount. Subsequently, a GSHP system was designed and implemented within an office container, considering the various types of steel-pipe civil structures. During the performance evaluation tests, parameters such as the coefficient of performance (COP) and entering water temperature (EWT) were closely monitored. The outcomes indicated an average COP of 3.74 for the GSHP system and the EWT remained relatively stable throughout the tests. Consequently, the GSPH system demonstrated its capability to consistently provide a sufficient heat source, even during periods of high cooling thermal demand, by utilzing the steel-pipe civil structures.

Energy Performance Evaluation of a Double-skin Facade with a Venetian Blind in Residential Buildings (주거건물용 이중외피 시스템의 블라인드 조절에 따른 에너지 성능평가에 관한 연구)

  • Lee, So-Yeun;Kang, Jae-Sik;Kim, Kang-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.1-9
    • /
    • 2010
  • Apartment balcony has been remodeled since the government permitted remodeling in January 2006.But extended balcony has great impact on building heat gain and loss. Therefore It has problems such as increase of heating and cooling energy. So $\underline{t}echnical$ solutions about window solar gain in summer is an urgent matter. The Purpose of this study is to evaluate energy performance of a blind in a double-skin facade in residential buildings by using EnergyPlus program. The results show that slat angles of $90^{\circ}$ is best in energy performance if we do not consider daylight. Poorly daylighted living room needs electric light and it also causes high cooling load. On the other hand, the results show that the application of blinds controlled automatically is best for energy performance when we consider daylight. Blind slat angles of $50\sim60^{\circ}$ have best performance when blinds are controlled in this angle throughout the day on a clear day in August. Blind slat angles of $0\sim30^{\circ}$ have best performance when blinds $\underline{are\;controlled}$ in this angle throughout the day on a cloudy day (more than 7 of total sky cover) in August.

Evaluation of Energy Consumption of HVAC System for Air Filter Pressure Difference Change in Commercial Buildings (공조설비의 필터차압 변화에 따른 에너지 소비성능 평가)

  • Won Keun-Ho;Kwak Ro-Yeul;Huh Jung-ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1227-1233
    • /
    • 2004
  • Air handling unit (AHU)'s air filter pressure difference is important for energy consumption and indoor air quality. Both energy Performance data and air filter differential pressure of AHU in real office buildings were monitored and analyzed to investigate quantitatively energy impact as dust buildup level on air filter grows. We also modeled and simulated CAV system using HVACSIM+ program to examine the energy effect of dust buildup on filters. Through analysis of time series pressure drop data, the filter pressure difference rate has been increased due to cumulative supply air flow rate increase. As filter pressure drop increased to 1 inch water column, it is found that the supply air flow rate was decreased by 10%, the chilled water flow rate was increased by 5.9% and the pump energy consumption was increased to 5.9%.