• 제목/요약/키워드: energy optimization

검색결과 2,423건 처리시간 0.033초

이중 적층 구조 표적을 갖는 투과형 엑스선관의 몬테카를로 전산모사 (Monte Carlo Simulation of Transmission-Type X-ray Tube with Dual-Structured Target)

  • 천권수
    • 한국방사선학회논문지
    • /
    • 제17권1호
    • /
    • pp.107-114
    • /
    • 2023
  • 엑스선형광분석은 비파괴적으로 시료에 포함된 원소와 농도를 분석할 수 있는 기법으로 과학 및 산업 분야에 광범위하게 사용되고 있다. 다양한 물질을 포함한 혼합물 또는 화합물 분석의 정밀도 향상을 위해 10 keV 근방의 저에너지와 20 keV 근방의 에너지 영역에 높은 강도 분포를 갖는 엑스선관이 요구된다. 두 에너지 영역에서 높은 강도 분포를 갖는 스펙트럼을 얻기 위하여 9.65 keV의 특성엑스선을 가지는 텅스텐과 17.48 keV의 몰리브덴 두 물질을 적층한 구조의 표적을 가지는 투과형 엑스선관을 몬테카를로 전산모사를 통해 스펙트럼을 분석하였다. W-Mo 구조의 표적을 통해 10 keV와 20 keV 근방의 강한 강도를 갖는 특성엑스선을 얻었다. 또한 4 ㎛ 두께의 Mo-W multilayers 구조의 표적을 통해 최적의 강도 분포를 갖는 스펙트럼을 얻을 수 있음을 확인하였다. 다양한 표적 물질을 선택 조합하고 두께 최적화를 통해 원하는 에너지 대역에서 높은 강도 분포를 갖는 스펙트럼을 얻는 것이 가능하다.

수급 불균형을 고려한 전력망의 최적 자원 할당을 위한 일치 기반의 분산 알고리즘 (Consensus-Based Distributed Algorithm for Optimal Resource Allocation of Power Network under Supply-Demand Imbalance)

  • 임영훈
    • 한국정보전자통신기술학회논문지
    • /
    • 제15권6호
    • /
    • pp.440-448
    • /
    • 2022
  • 최근 분산 에너지 자원들의 도입으로 전력망의 최적 자원 할당 문제의 중요성이 강조되고 있고, 대규모 전력망의 방대한 양의 데이터를 처리하기 위해 분산 자원 할당 기법이 요구되고 있다. 최적 자원 할당 문제에서 각 발전기의 발전 용량의 한계로 인하여 수급의 균형이 만족하는 경우를 고려한 연구는 많이 진행되고 있지만, 총 요구량이 최대 발전 용량을 초과하는 경우인 수급 불균형을 고려한 연구는 아직 미미한 실정이다. 본 논문에서는 수급 균형인 상황뿐만 아니라 수급 불균형 상황을 고려하여 전력망의 최적 자원 할당을 위한 일치 기반의 분산 알고리즘을 제안한다. 제안하는 분산 알고리즘은 수급 균형을 만족하는 경우에는 최적의 자원을 할당하고, 수급이 불균형한 경우에는 부족한 자원의 양을 계측할 수 있도록 설계하였다. 마지막으로 모의실험을 통하여 제안된 알고리즘의 성능을 검증하였다.

3D 프린팅으로 제작된 AlCrFeNi 고엔트로피 합금의 분말 입도에 따른 특성 분석 (A Study on Powder Size Dependence of Additive Manufactured AlCrFeNi HEA on Its Microstructure and Mechanical Properties)

  • 최종우;박혜진;강결찬;정민섭;오기태;홍성환;김현길;김기범
    • 한국분말재료학회지
    • /
    • 제29권1호
    • /
    • pp.22-27
    • /
    • 2022
  • Conventionally, metal materials are produced by subtractive manufacturing followed by melting. However, there has been an increasing interest in additive manufacturing, especially metal 3D printing technology, which is relatively inexpensive because of the absence of complicated processing steps. In this study, we focus on the effect of varying powder size on the synthesis quality, and suggest optimum process conditions for the preparation of AlCrFeNi high-entropy alloy powder. The SEM image of the as-fabricated specimens show countless, fine, as-synthesized powders. Furthermore, we have examined the phase and microstructure before and after 3D printing, and found that there are no noticeable changes in the phase or microstructure. However, it was determined that the larger the powder size, the better the Vickers hardness of the material. This study sheds light on the optimization of process conditions in the metal 3D printing field.

Modeling and optimization of infill material properties of post-installed steel anchor bolt embedded in concrete subjected to impact loading

  • Saleem, Muhammad
    • Smart Structures and Systems
    • /
    • 제29권3호
    • /
    • pp.445-455
    • /
    • 2022
  • Steel anchor bolts are installed in concrete using a variety of methods. One of the most common methods of anchor bolt installation is using epoxy resin as an infill material injected into the drilled hole to act as a bonding material between the steel bolt and the surrounding concrete. Typical design standards assume uniform stress distribution along the length of the anchor bolt accompanied with single crack leading to pull-out failure. Experimental evidence has shown that the steel anchor bolts fail owing to the multiple failure patterns, hence these design assumptions are not realistic. In this regard, the presented research work details the analytical model that takes into consideration multiple micro cracks in the infill material induced via impact loading. The impact loading from the Schmidt hammer is used to evaluate the bond condition bond condition of anchor bolt and the epoxy material. The added advantage of the presented analytical model is that it is able to take into account the various type of end conditions of the anchor bolts such as bent or U-shaped anchors. Through sensitivity analysis the optimum stiffness and shear strength properties of the epoxy infill material is achieved, which have shown to achieve lower displacement coupled with reduced damage to the surrounding concrete. The accuracy of the presented model is confirmed by comparing the simulated deformational responses with the experimental evidence. From the comparison it was found that the model was successful in simulating the experimental results. The proposed model can be adopted by professionals interested in predicting and controlling the deformational response of anchor bolts.

A Bi-objective Game-based Task Scheduling Method in Cloud Computing Environment

  • Guo, Wanwan;Zhao, Mengkai;Cui, Zhihua;Xie, Liping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권11호
    • /
    • pp.3565-3583
    • /
    • 2022
  • The task scheduling problem has received a lot of attention in recent years as a crucial area for research in the cloud environment. However, due to the difference in objectives considered by service providers and users, it has become a major challenge to resolve the conflicting interests of service providers and users while both can still take into account their respective objectives. Therefore, the task scheduling problem as a bi-objective game problem is formulated first, and then a task scheduling model based on the bi-objective game (TSBOG) is constructed. In this model, energy consumption and resource utilization, which are of concern to the service provider, and cost and task completion rate, which are of concern to the user, are calculated simultaneously. Furthermore, a many-objective evolutionary algorithm based on a partitioned collaborative selection strategy (MaOEA-PCS) has been developed to solve the TSBOG. The MaOEA-PCS can find a balance between population convergence and diversity by partitioning the objective space and selecting the best converging individuals from each region into the next generation. To balance the players' multiple objectives, a crossover and mutation operator based on dynamic games is proposed and applied to MaPEA-PCS as a player's strategy update mechanism. Finally, through a series of experiments, not only the effectiveness of the model compared to a normal many-objective model is demonstrated, but also the performance of MaOEA-PCS and the validity of DGame.

열처리 효과에 따른 SnO2 기반 수소가스 센서의 특성 최적화 (Optimization of SnO2 Based H2 Gas Sensor Along with Thermal Treatment Effect)

  • 정동건;이준엽;권진범;맹보희;김영삼;양이준;정대웅
    • 센서학회지
    • /
    • 제31권5호
    • /
    • pp.348-352
    • /
    • 2022
  • Hydrogen gas (H2) which is odorless, colorless is attracting attention as a renewable energy source in varions applications but its leakage can lead to disastrous disasters, such as inflammable, explosive, and narcotic disasters at high concentrations. Therefore, it is necessary to develop H2 gas sensor with high performance. In this paper, we confirmed that H2 gas detection ability of SnO2 based H2 gas sensor along with thermal treatment effect of SnO2. Proposed SnO2 based H2 gas sensor is fabricated by MEMS technologies such as photolithgraphy, sputtering and lift-off process, etc. Deposited SnO2 thin films are thermally treated in various thermal treatement temperature in range of 500-900 ℃ and their H2 gas detection ability is estimatied by measuring output current of H2 gas sensor. Based on experimental results, fabricated H2 gas sensor with SnO2 thin film which is thermally treated at 700 ℃ has a superior H2 gas detection ability, and it can be expected to utilize at the practical applications.

Experimental Assessment of Mesophilic and Thermophilic Batch Fermentative Biohydrogen Production from Palm Oil Mill Effluent Using Response Surface Methodology

  • Azam Akhbari;Shaliza Ibrahim;Low Chin Wen;Afifi Zainal;Noraziah Muda;Liyana Yahya;Onn Chiu Chuen;Farahin Mohd Jais;Mohamad Suffian bin Mohamad Annuar
    • Korean Chemical Engineering Research
    • /
    • 제61권2호
    • /
    • pp.278-286
    • /
    • 2023
  • The present work evaluated the production of biohydrogen under mesophilic and thermophilic conditions through dark fermentation of palm oil mill effluent (POME) in batch mode using the design of experiment methodology. Response surface methodology (RSM) was applied to investigate the influence of the two significant parameters, POME concentration as substrate (5, 12.5, and 20 g/l), and volumetric substrate to inoculum ratio (1:1, 1:1.5, and 1:2, v/v.%), with inoculum concentration of 14.3 g VSS/l. All the experiments were analyzed at 37 ℃ and 55 ℃ at an incubation time of 24 h. The highest chemical oxygen demand (COD) removal, hydrogen content (H2%), and hydrogen yield (HY) at a substrate concentration of 12.5 g COD/l and S:I ratio of 1:1.5 in mesophilic and thermophilic conditions were obtained (27.3, 24.2%), (57.92, 66.24%), and (6.43, 12.27 ml H2/g CODrem), respectively. The results show that thermophilic temperature in terms of COD removal was more effective for higher COD concentrations than for lower concentrations. Optimum parameters projected by RSM with S:I ratio of 1:1.6 and POME concentration of 14.3 g COD/l showed higher results in both temperatures. It is recognized how RSM and optimization processes can predict and affect the process performance under different operational conditions.

Thermodynamic simulation and structural optimization of the collimator in the drift duct of EAST-NBI

  • Ning Tang;Chun-dong Hu;Yuan-lai Xie;Jiang-long Wei;Zhi-Wei Cui;Jun-Wei Xie;Zhuo Pan;Yao Jiang
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4134-4145
    • /
    • 2022
  • The collimator is one of the high-heat-flux components used to avoid a series of vacuum and thermal problems. In this paper, the heat load distribution throughout the collimator is first calculated through experimental data, and a transient thermodynamic simulation analysis of the original model is carried out. The error of the pipe outlet temperature between the simulated and experimental values is 1.632%, indicating that the simulation result is reliable. Second, the model is optimized to improve the heat transfer performance of the collimator, including the contact mode between the pipe and the flange, the pipe material and the addition of a twisted tape in the pipe. It is concluded that the convective heat transfer coefficient of the optimized model is increased by 15.381% and the maximum wall temperature is reduced by 16.415%; thus, the heat transfer capacity of the optimized model is effectively improved. Third, to adapt the long-pulse steady-state operation of the experimental advanced superconducting Tokamak (EAST) in the future, steady-state simulations of the original and optimized collimators are carried out. The results show that the maximum temperature of the optimized model is reduced by 37.864% compared with that of the original model. The optimized model was changed as little as possible to obtain a better heat exchange structure on the premise of ensuring the consumption of the same mass flow rate of water so that the collimator can adapt to operational environments with higher heat fluxes and long pulses in the future. These research methods also provide a reference for the future design of components under high-energy and long-pulse operational conditions.

Laser Powder Bed Fusion 공정으로 제조된 Ti-6Al-4V 격자 구조물의 최적 설계 기법 연구 (A Study on the Optimal Design of Ti-6Al-4V Lattice Structure Manufactured by Laser Powder Bed Fusion Process)

  • 김지윤;우정민;손용호;김정호;이기안
    • 한국분말재료학회지
    • /
    • 제30권2호
    • /
    • pp.146-155
    • /
    • 2023
  • The Ti-6Al-4V lattice structure is widely used in the aerospace industry owing to its high specific strength, specific stiffness, and energy absorption. The quality, performance, and surface roughness of the additively manufactured parts are significantly dependent on various process parameters. Therefore, it is important to study process parameter optimization for relative density and surface roughness control. Here, the part density and surface roughness are examined according to the hatching space, laser power, and scan rotation during laser-powder bed fusion (LPBF), and the optimal process parameters for LPBF are investigated. It has high density and low surface roughness in the specific process parameter ranges of hatching space (0.06-0.12 mm), laser power (225-325 W), and scan rotation (15°). In addition, to investigate the compressive behavior of the lattice structure, a finite element analysis is performed based on the homogenization method. Finite element analysis using the homogenization method indicates that the number of elements decreases from 437,710 to 27 and the analysis time decreases from 3,360 to 9 s. In addition, to verify the reliability of this method, stress-strain data from the compression test and analysis are compared.

A Study of Double Dark Photons Produced by Lepton Colliders using High Performance Computing

  • Park, Kihong;Kim, Kyungho;Cho, Kihyeon
    • Journal of Astronomy and Space Sciences
    • /
    • 제39권1호
    • /
    • pp.1-10
    • /
    • 2022
  • The universe is thought to be filled with not only Standard Model (SM) matters but also dark matters. Dark matter is thought to play a major role in its construction. However, the identity of dark matter is as yet unknown, with various search methods from astrophysical observartion to particle collider experiments. Because of the cross-section that is a thousand times smaller than SM particles, dark matter research requires a large amount of data processing. Therefore, optimization and parallelization in High Performance Computing is required. Dark matter in hypothetical hidden sector is though to be connected to dark photons which carries forces similar to photons in electromagnetism. In the recent analysis, it was studied using the decays of a dark photon at collider experiments. Based on this, we studies double dark photon decays at lepton colliders. The signal channels are e+e- → A'A' and e+e- → A'A'γ where dark photon A' decays dimuon. These signal channels are based on the theory that dark photons only decay into heavily charged leptons, which can explain the muon magnetic momentum anomaly. We scanned the cross-section according to the dark photon mass in experiments. MadGraph5 was used to generate events based on a simplified model. Additionally, to get the maximum expected number of events for the double dark photon channel, the detector efficiency for several center of mass (CM) energy were studied using Delphes and MadAnalysis5 for performance comparison. The results of this study will contribute to the search for double dark photon channels at lepton colliders.