• Title/Summary/Keyword: energy harvesting device

Search Result 168, Processing Time 0.038 seconds

A Implementation of Acer Pictum Sap Integrated Management System based on Energy Harvesting and Monitoring System (에너지 하베스팅 및 모니터링 기반의 고로쇠 수액 통합 관리 시스템 구현)

  • Jung, SeHoon;Jo, KyeongHo;Kim, JunYeoung;Park, Jun;Kim, JongChan;Choi, SooIm;Sim, ChunBo
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.11
    • /
    • pp.1324-1337
    • /
    • 2019
  • This study set out to investigate an energy harvesting device to ensure stable energy supply to batteries and data collection devices and a monitoring system for acer pictum sap to check collected data. Acer pictum sap farmers have written down weather information and yield of acer pictum sap manually for data storage. Since the job is done manually, there are many missing values in their data. In addition, it is not easy to manage batteries due to the characteristics of the areas where acer pictum sap is collected. The present study thus decided to build an energy harvesting device based on new renewable energy to ensure stable energy supply by taking into consideration power load, daily power consumption, and number of days with no sunshine for various devices. For a monitoring system, the investigator proposed a JSP-based web page to monitor temperature, humidity, volume of collected water, and battery state in real time. The proposed energy harvesting device was applied to reduce missing values in data. It promoted stable energy supply to the batteries and data collection devices, reducing the percentage of missing values in data from 30.55% to 0%.

Micro-power Properties of 31Type Triple-morph Cantilever for Energy Harvesting Device (31 타입 트리모프 켄틸레버의 마이크로 발전 특성 연구)

  • Kim, In-Sung;Joo, Hyeon-Kyu;Jung, Soon-Jong;Kim, Min-Soo;Song, Jae-Sung;Jeon, So-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.220-221
    • /
    • 2008
  • With recent advanced in portable electric devices, wireless sensor, MEMS and bio-Mechanics device, the new typed power supply, not conventional battery but self-powered energy source is needed. Particularly, the system that harvests from their environments are interests for use in self powered devices. For very low powered devices, environmental energy may be enough to use power source. Therefore, in other to made piezoelectric energy harvesting device. The made 31 type triple-morph cantilever was resulted from the conditions of 100k$\Omega$, 0.25g, 154Hz respectively. The thick film was prepared at the condition of $6.57V_{rms}$, and its power was $432.31{\mu}W$ and its thickness was $50{\mu}m$.

  • PDF

Self-powered hybrid electromagnetic damper for cable vibration mitigation

  • Jamshidi, Maziar;Chang, C.C.;Bakhshi, Ali
    • Smart Structures and Systems
    • /
    • v.20 no.3
    • /
    • pp.285-301
    • /
    • 2017
  • This paper presents the design and the application of a new self-powered hybrid electromagnetic damper that can harvest energy while mitigating the vibration of a structure. The damper is able to switch between an energy harvesting passive mode and a semi-active mode depending on the amount of energy harvested and stored in the battery. The energy harvested in the passive mode resulting from the suppression of vibration is employed to power up the monitoring and electronic components necessary for the semi-active control. This provides a hybrid control capability that is autonomous in terms of its power requirement. The proposed hybrid circuit design provides two possible options for the semi-active control: without energy harvesting and with energy harvesting. The device mechanism and the circuitry that can drive this self-powered electromagnetic damper are described in this paper. The parameters that determine the device feasible force-velocity region are identified and discussed. The effectiveness of this hybrid damper is evaluated through a numerical simulation study on vibration mitigation of a bridge stay cable under wind excitation. It is demonstrated that the proposed hybrid design outperforms the passive case without external power supply. It is also shown that a broader force range, facilitated by decoupled passive and semi-active modes, can improve the vibration performance of the cable.

Development of Personal Location Identification Device based on Energy Harvesting (에너지 하베스팅 기반 개인 위치식별 장치 개발에 관한 연구)

  • Ha, Yeon-Chul;Son, Seo-Woo;Park, Jae-Mun;Lee, In-Seong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.3
    • /
    • pp.134-140
    • /
    • 2021
  • This study relates to the development of a wearable device that can identify a personal location using low-power GPS and IMU based on energy harvesting. The energy harvesting technology using a piezoelectric device was applied for the development of personal location identification, and made it possible to acquire precise personal location data using GPS and IMU. As a result of the experiment, it was confirmed that GPS and IMU data were normally received. The personal location identification device can be prepared for an accident by identifying a personal location in a disaster area, etc., and the user will be able to use it easily regardless of time, place, and environment. It is expected that it can be used in various fields such as leisure and health care.

Design of a Thermal Energy Harvesting Circuit With MPPT Control (MPPT 기능을 갖는 열전 에너지 하베스팅 회로)

  • Kim, Su-jin;Park, Kum-young;Yoon, Eun-jung;Oh, Won-seok;Yu, chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.255-258
    • /
    • 2012
  • In this paper, with a thermoelectric device using the seebeck effect which generates electromotive force by temperature difference generates electric energy an energy harvesting circuit using MPPT(Maximun Power Point Traking) control is designed. After periodically sampling the open voltage of the thermoelectric device, the 1/2 voltage of open voltage which in a maximum power point is maintained through MPPT control circuit and harvested energy from thermoelectric device is delivered to load through a switch. The proposed thermal energy harvesting circuit is designed with $0.35{\mu}m$ CMOS process and the chip area excluding pads is $1168.7{\mu}m{\times}541.3{\mu}m$.

  • PDF

A Study on the Design of a Wearable Solar Energy Harvesting Device Based on Outdoor Activities (아웃도어 활동기반 웨어러블 광에너지 하베스팅 장치 디자인에 관한 연구)

  • Lee, Eunyoung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.44 no.6
    • /
    • pp.1224-1239
    • /
    • 2020
  • This study develops a wearable solar energy harvesting device that absorbs solar energy to generate and store power which can be used during outdoor activities by users even after dark. For this study, a prototype hat for outdoor activities at night was developed after the design of a solar energy harvesting generation, storage, and delivery system was designed that could store energy to light up LEDs. First, the main control board of the system was designed to integrate the charging function, the darkness detection circuit, the battery voltage sensing circuit, and the LED driving circuit in order to reduce bulkiness and minimize the connection structure. It was designed to increase convenience. Second, the system was designed as a wearable fashion product that connected each part with fiber bands and manufacturing it so as to be detachable from the hat. Third, charging and LED operation tests show that the battery is fully charged after 5 hours even in winter when the illuminance value is low. In addition, the LED operation experiment verified the effectiveness of a buffered system that could operate the LEDs for about 3 hours at night.

A Fundamental Study for Design of Electric Energy Harvesting Device using PZT on the Road (도로용 압전발전체 시험모듈 설계를 위한 기초 실험 연구)

  • Lee, Jae-Jun;Ryu, Seung-Ki;Moon, Hak-Yong;Kwon, Soo-Ahn
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.159-166
    • /
    • 2011
  • Green house gas emissions are increasing as development of the industrial economy of the international community. Many countries in the world are endeavoring to reduce green house gas emissions under severe climate change. In order to protect grobal warming, government is trying to reduce green gas emissions under "Low Carbon Green Growth Policy" and investing climiate-firendly industries such as renewable energy harvesting. Renewable energy has been rapidly developing as a result of investment for development technology of using natural energy such as solar, wind, tidal, etc. There are lots of waste energy in the road space. However, nobody is not interested in waste energy from the road space. This paper present a fundamentally experimental study of energy harvesting technique to use waste energy in the road. The waste energy in the road is covered a pressure and impact of vehicles on the road, the radiant heat from asphalt pavement, road noise and vibration etc. In this study, an energy harvesting device using piezoelectric element is proposed and various tests are conducted to investigate a characteristic of this device as function of impact loading based on piezoelectric effect behavior. This paper shows the energy harvesting results of the device using domestic piezoelectirc element as a function of impact load size and pavement types.

A Behavior Analysis in the Circular Hybrid Subminiture Energy Harvesting Device (순환형 하이브리드 초소형 에너지 수확장치에서의 거동 해석)

  • Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.11
    • /
    • pp.1691-1696
    • /
    • 2013
  • In this paper, an analysis of behavior is performed in the circular hybrid energy harvesting device. This analysis of behavior is to confirm with or without an existence of nonlinear system because its system is required to produce the more energy. To do this, first of all the phase portrait is reconstructed through Taken's embedding method, and then Poincare map is organized by using phase portrait and finally Lyapunov exponent is analyzed.

A Basic Experimental Study on Noise Energy Harvesting for Green Infrastructure (녹색사회기반시설의 소음에너지 하베스팅을 위한 기초실험 연구)

  • Jo, Byung-Wan;Kim, Hyun-Sik;Kim, Kyung-Tae;Yoon, Kwang-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.559-565
    • /
    • 2010
  • In this study we propose noise energy harvesting for green infrastructure development. In this regard, infrastructures such as railroad, subway, and road are taken into consideration as sources of noise which provides energy through certain wave forms. As the need of recycling noise energy became reasonable due to the increase of infrastructure usage, the capacity and property of our noise energy generating device, which uses electromagnetic induction for electricity generation, are analysed in this paper. Consequently, the outcomes of this experiment show the fact that maximum electricity is generated from the device at a specific point of noise frequency, and the relation between air pressure caused by noise and the electricity generated by the device is in a specific proportional form either linear or non-linear. The major points of developing noise energy generating device in order to apply it into social infrastructure are discussed in this paper as well.

A Study on SSDP protocol based IoT / IoL Device Discovery Algorithm for Energy Harvesting Interworking Smart Home

  • Lee, Jonghyeok;Han, Jungdo;Cha, Jaesang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.7-12
    • /
    • 2018
  • The spread of IoT (Internet of Things) technology that connects objects based on wired / wireless networks is accelerating, and IoT-based smart home technology that constitutes a super connected network connecting sensors and home appliances existing inside and outside the home is getting popular. In addition, demand for alternative energy technologies such as photovoltaic power generation is rapidly increasing due to rapid increase of consumption of energy resources. Recently, small solar power systems for general households as well as large solar power systems for installation in large buildings are being introduced, but they are effectively implemented due to limitations of small solar panels and lack of power management technology. In this paper, we have studied smart home structure and IoT / IoL device discovery algorithm for energy harvesting system based on photovoltaic power generation, It is possible to construct an efficient smart home system for device control.