• 제목/요약/키워드: energy generation

검색결과 4,992건 처리시간 0.038초

풍력발전기술의 현황과 전망 (The Current Status and the Prospects of Wind Energy)

  • 장문석;방형준
    • 한국환경과학회지
    • /
    • 제18권8호
    • /
    • pp.933-940
    • /
    • 2009
  • Recently, wind power generation is an emerging industry expanding its market rapidly thanks to the increasing need to solve the scarcity of fossil fuels and the risk of potential global warming. Wind power generation has shown to be an effective response plan to global warming, showing the most price competitiveness among the renewable energy sources by its higher efficiency. Therefore wind energy has attracted considerable attention as the industrial growth drive for the next generation. Considering Korea's high dependence of overseas energy resources, the importance of wind power is growing as the most effective alternative energy source to ensure energy security as well as becoming a key strategic industry for exports. In this study, the social and economic effects of the wind power industry is discussed and the current status and the future prospects of the wind energy market is also examined.

CO2 배출, 원자력에너지, 신재생에너지 발전량과의 관계분석: 한국, 일본, 독일을 중심으로 (Study on the Relationship between CO2, Nuclear, and Renewable Energy Generation in Korea, Japan and Germany)

  • 윤정혜;강상목
    • 신재생에너지
    • /
    • 제16권4호
    • /
    • pp.9-22
    • /
    • 2020
  • This study analyzed the short- and long-term effects of nuclear and renewable energy generation on CO2 emissions in Korea, Japan, and Germany from 1987 to 2016 by using the unit root test, Johansen cointegration test, and ARDL model. The unit root test was performed, and the Johansen cointegration test showed cointegration relationships among variables. In the long run, in Germany, the generation of both nuclear and renewable energy was found to affect CO2 emission reduction, while South Korea's renewable energy generation, including hydropower, increased the emissions. Japan only showed significance in fossil fuels. In the short run, in the three countries, the generation of nuclear and renewable energy, excluding hydropower, affected CO2 emission. However, in Korea and Germany, nuclear and renewable energy generation, respectively, affected CO2 emission reduction. Although the rest are significant, the results showed that they increased CO2 emissions.

태양광발전 및 ESS 기반 전기차 충전인프라용 블랙박스 개발 (Development of Black Box for EV Charging Infra based on Solar Power Generation and ESS)

  • 김동완;박지호;안영주
    • 전기학회논문지P
    • /
    • 제67권3호
    • /
    • pp.160-167
    • /
    • 2018
  • In this paper, a black box, which is provided the reliability and user safety of home battery energy storage system connected with solar energy generation, is developed. In the developed scheme, a status and diagnosis data of battery management system, power conditioning system, solar energy generation and grid is measured. This status and diagnosis data is stored and displayed in the developed black box. In addition, this status and diagnosis data is stored and displayed in a monitoring system and a smart phone of user. A performance evaluation of the developed black box is carried out using emulator of home battery energy storage system connected with solar energy generation. Consequently, the developed black box is proved its superiority of the reliability and user safety.

원자력 및 신재생에너지 발전의 CO2 감축 비용 효율성 비교 (Comparison of Cost-Efficiency of Nuclear Power and Renewable Energy Generation in Reducing CO2 Emissions in Korea)

  • 이용성;김현석
    • 자원ㆍ환경경제연구
    • /
    • 제30권4호
    • /
    • pp.607-625
    • /
    • 2021
  • 본 연구는 우리나라 발전 부문의 원자력과 신재생에너지 발전의 온실가스 감축효과를 추정하고, 원자력 발전의 사고위험에 따른 외부비용을 포함한 발전 비용을 고려하여 두 발전원의 온실가스 감축비용의 효율성을 비교하였다. 모형의 추정결과, 원자력 및 신재생에너지 발전 1% 증가는 각각 0.744%와 0.127%의 CO2 배출량을 감축시키는 것으로 분석되었다. 이는 CO2 배출량을 1% 감축시키기 위해서는 원자력 발전은 1.344%, 신재생에너지 발전은 7.874% 증가시켜야 함을 의미한다. 추정된 계수와 원자력 발전의 외부비용 포함 발전비용을 사용하여 1%의 CO2 배출량 감축을 위한 총 비용을 도출한 결과, 전체 발전량이 1MWh로 가정할 때 CO2 배출량 1%를 감축시키기 위한 원자력 발전비용은 외부비용에 따라 0.72~1.49달러로 계산되었으며, 신재생에너지 발전비용은 6.49달러로 나타났다. 이를 2020년 우리나라 총 화석연료 발전량(352,706GWh)을 기준으로 계산할 경우, 원자력 발전은 2.54억~5.26억 달러, 신재생에너지 발전은 22.89억 달러로 신재생에너지 발전이 원자력 발전보다 4.35~9.01배의 비용이 더 소요되는 것으로 분석되었다. 따라서 발전 부문의 온실가스 감축을 위해서는 원자력 발전이 신재생에너지 발전에 비해 높은 비용 효율성을 가지는 것을 알 수 있었다.

석탄화력 발전 대비 수력 발전에 대한 국민 선호도 분석 (Public Preferences for Replacing Hydro-Electricity Generation with Coal-Fired Power Generation)

  • 최효연;류문현;유승훈
    • 에너지공학
    • /
    • 제24권1호
    • /
    • pp.164-171
    • /
    • 2015
  • 석탄화력 발전은 기저발전원으로서 전력을 안정적으로 공급하는 역할을 해왔으나 전력을 생산하여 공급하는 과정에서 다양한 사회적 비용을 발생시킨다. 기후변화에 대응하기 위하여 석탄화력 발전의 비중을 낮추고 저탄소 발전원의 비중을 늘릴 필요가 있다. 이에 본 연구는 대표적인 재생에너지인 수력발전으로 석탄화력 발전의 전력생산을 대체하는 것에 대한 국민들의 지불의사액을 추정해 보고자 한다. 이를 위하여 비시장 재화를 대표하는 기법인 조건부 가치측정법을 적용하였으며, 영의 지불의사액(willingness to pay, WTP)을 명시적으로 다루기 위하여 스파이크 모형을 적용하였다. 분석결과, 석탄화력 발전으로 공급받는 전기를 수력 발전으로 대체하기 위한 국민들의 추가적 WTP 평균값은 1kWh당 약 54원으로 추정되었다. 이러한 연구결과는 발전원의 환경적 가치를 활용하는 연구 및 발전원 구성에 있어 중요한 참고자료로 활용될 수 있다.

신설아파트 열병합발전 도입에 대한 예비 타당성 분석기법 개발 (Development of a Method of Pre-Feasibility Study for the Application of Co-Generation System in New Apartment)

  • 기우봉;김광호
    • 산업기술연구
    • /
    • 제27권A호
    • /
    • pp.185-193
    • /
    • 2007
  • The object of this study is the development of a Method which is enable to review the preliminary feasibility for co-generation system in new apartment buildings. In Korea co-generation systems have been installed in most of large industrial plants and commercial buildings which consume a large quantity of electric and heat energy, for energy saving and cutting products cost, under positive governmental supports. However for apartment buildings which consume quite a large electric and heat energy, are still remained in conventional energy supply system, and are not popular to utilize useful co-generation system. One of the major reason for these is the lack of clear and easy justification tool. In this circumstance, this study can provide a tool to verify the feasibility of co-generation in apartment buildings with this handy tools for planners and designers beforehand.

  • PDF

열전발전 적용을 위한 가솔린차량의 전력 및 배기열 에너지 분석 연구 (Analysis of the Electric Energy and Exhaust Heat Energy for the Application of Thermo-Electric Generation in a Gasoline Vehicle)

  • 이영재;표영덕;김강출
    • 한국자동차공학회논문집
    • /
    • 제10권1호
    • /
    • pp.99-105
    • /
    • 2002
  • About 70% of energy input to internal combustion engine is rejected to atmosphere by heat. By utilizing this waste heat, a plenty of energy can be conserved in nationwide. One of possible ways is the thermoelectric generation to utilize engine's waste heat to provide auxiliary electric power. Under th is concept, we have been developing the thermoelectric generation system to replace the alternator by converting the waste heat in the engine's exhaust directly to electricity This system may reduce the shaft horse power of the engine, then improves the vehicle fuel economy and the exhaust emissions. In the present study, the characteristics of the electric energy and exhaust heal energy in city and highway mode driving conditions are analysed by using a gasoline passenger car. These results would be used to determine the optimum design parameters of the thermoelectric generation system.

에너지저장장치 및 STATCOM을 이용한 풍력발전시스템의 출력제어 기법 (Power Output Control of Wind Generation System Through Energy Storage System and STATCOM)

  • 김종율;박준호
    • 전기학회논문지
    • /
    • 제59권10호
    • /
    • pp.1718-1726
    • /
    • 2010
  • Utilization of renewable energy is becoming increaingly important from the viewpoints of environmental protection and conservation of fossil fuel. However, the generating power of renewable energy is always fluctuating due to the environmental status. This paper presents a scheme for supervisory control of wind generation system with the energy storage and STATCOM to reduce the power variation. In this paper, we especially concentrate on constant power output control of wind generation system. In order to achieve this purpose, the coordinated control strategy between different types of energy storage system and reactive power compensation device. The proposed control scheme has been validated by PSCAD/EMTDC simulation. As a result, the proposed scheme can handle the power output of wind generation system with a constant value.

국내 신재생에너지 원별 발전단가 전망 (The forecast of renewable generation cost in Korea)

  • 김길신;한유리
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.140-140
    • /
    • 2011
  • Korea's RPS, which requires that power generation companies obtain a minimum percentage of their generation by using renewable energy, will take effect in 2012. Based on the first-year law enforcement, generation companies have to satisfy 2% of RPS compliance ratio in 2012. Then, the required RPS compliance ratio will increase up to 10% in 2022. Thus generation companies need to construct power plants that utilize various types of renewable energy sources such as PV and wind power. This work is aimed to analyze the cost of such a renewable power source in terms of capital cost, capacity factor, and fuel cost. We provide the analytical expectation on the renewable power generation cost of 2012 focusing on PV, onshore/offshore wind, fuel cell, and IGCC, which are focused by government policy.

  • PDF

Development of ESS Scheduling Algorithm to Maximize the Potential Profitability of PV Generation Supplier in South Korea

  • Kong, Junhyuk;Jufri, Fauzan Hanif;Kang, Byung O;Jung, Jaesung
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2227-2235
    • /
    • 2018
  • Under the current policies and compensation rules in South Korea, Photovoltaic (PV) generation supplier can maximize the profit by combining PV generation with Energy Storage System (ESS). However, the existing operational strategy of ESS is not able to maximize the profit due to the limitation of ESS capacity. In this paper, new ESS scheduling algorithm is introduced by utilizing the System Marginal Price (SMP) and PV generation forecasting to maximize the profits of PV generation supplier. The proposed algorithm determines the charging time of ESS by ranking the charging schedule from low to high SMP when PV generation is more than enough to charge ESS. The discharging time of ESS is determined by ranking the discharging schedule from high to low SMP when ESS energy is not enough to maintain the discharging. To compensate forecasting error, the algorithm is updated every hour to apply the up-to-date information. The simulation is performed to verify the effectiveness of the proposed algorithm by using actual PV generation and ESS information.