• Title/Summary/Keyword: energy generation

Search Result 4,992, Processing Time 0.034 seconds

A Magnetic Energy Recovery Switch Based Terminal Voltage Regulator for the Three-Phase Self-Excited Induction Generators in Renewable Energy Systems

  • Wei, Yewen;Kang, Longyun;Huang, Zhizhen;Li, Zhen;Cheng, Miao miao
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1305-1317
    • /
    • 2015
  • Distributed generation systems (DGSs) have been getting more and more attention in terms of renewable energy use and new generation technologies in the past decades. The self-excited induction generator (SEIG) occupies an important role in the area of energy conversion due to its low cost, robustness and simple control. Unlike synchronous generators, the SEIG has to absorb capacitive reactive power from the outer device aiming to stabilize the terminal voltage at load changes. This paper presents a novel static VAR compensator (SVC) called a magnetic energy recovery switch (MERS) to serve as a voltage controller in SEIG powered DGSs. In addition, many small scale SEIGs, instead of a single large one, are applied and devoted to promote the generation efficiency. To begin with, an expandable mathematic model based on a d-q equivalent circuit is created for parallel SEIGs. The control method of the MERS is further improved with the objective of broadening its operating range and restraining current harmonics by parameter optimization. A hybrid control strategy is developed by taking both of the stand-alone and grid-connected modes into consideration. Then simulation and experiments are carried out in the case of single and double SEIG(s) generation. Finally, the measurement results verify that the proposed DGS with SVC-MERS achieves a better stability and higher feasibility. The major advantages of the mentioned variable reactive power supplier, when compared to the STATCOM, include the adoption of a small DC capacitor, line frequency switching, simple control and less loss.

Measuring the benefits from integrated energy business-based combined heat and power plant as a decentralized generation source with a focus on avoiding the damages caused by large-scale transmission facilities (분산형 전원으로서의 집단에너지사업 열병합발전의 송전망 피해 회피편익 추정)

  • Kim, Hyo-Jin;Choi, Hyo-Yeon;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.67-73
    • /
    • 2015
  • Almost base-loaded power plants such as flaming coal and nuclear energy require large-scale transmission facilities (LTFs) in order to send electricity to remote consumption areas. As well known, LTFs incur various social costs. However, a decentralized generation source such as integrated energy business (IEB)-based combined heat and power (CHP) plant is located in nearby electricity-consuming area, and thus it does not demand LTFs, providing the benefits from avoiding the damages caused by them. This study attempts to measure the benefits of avoiding the damages from the LTFs by the use of the contingent valuation (CV) method. To this end, a national survey of randomly chosen 1,000 households was implemented and the public's willingness to pay (WTP) for substituting consumption of electricity generated from flaming coal-fired power plant, currently a dominant generation source in Korea, with that produced from IEB-based CHP plant. The results show that the WTP for the substitution is estimated to be about 41.4 won per kWh. Considering that this value amounts to 33% of the average price of residential electricity in 2014, the external benefit of the IEB-based CHP as a decentralized generation appears to be large.

The Electric Generation by Solar Energy (태양에너지 발전에 관한 연구)

  • Kim, Geun-Hui;Yang, Jun-Muk;Jeon, Seong-Sik
    • Solar Energy
    • /
    • v.1 no.1
    • /
    • pp.1-11
    • /
    • 1981
  • The electric generation system by solar energy was built which is composed of $10m^2$ reflector, parabolic mirror and the absorbers. The absorber(I) is a single iron pipe and the absorber (II) contains seven small iron pipes. The ratio of the area of the reflectors to that of the absorber is around 99.4-440. The absorber(II) is more efficient in power than (II) by 5.6 percent. The steam power efficiency of the absorber (II) is 25 percent in this experiments and 20 percent efficiency would be expected for 80.000 Kilowatts.

  • PDF

Fabrication of Electrochemical material for Energy generation (에너지 발전 재료)

  • Lee, Sang-Heon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.188-188
    • /
    • 2010
  • Recently, there has been increased incessantly an interest in research area on energy material for electronic and electric energy generation applications. The proposed material takes an unobtrusive operation into the simple displacing mechanism using chemical impact material. However, this material makes up a radical design, based on the operation of the stoichiometry ratio on the material architecture.

  • PDF

전원개발 및 우선구매를 통한 대체발전 보급확대 방안

  • 이창호;박종진;이재훈
    • Proceedings of the Korea Technology Innovation Society Conference
    • /
    • 2001.05a
    • /
    • pp.509-530
    • /
    • 2001
  • For the greenhouse 9as emissions' reduction of fossil fuel, the energy policy on the promotion of alternative energy should be implemented. Accordingly, national policies on the development and promotion of alternative energy were made, and related laws and regulations are being made, and comprehensive plans should be followed. The policies and strategies for promoting the renewable energy have been insufficient in comparison with those of the developed countries. This paper suggests the spread extension plan of renewable generation through generation development and priority purchase.

  • PDF

Wind Power Generation: Its Impact on Peak Time and Future Power Mix (퐁력전원이 피크타임과 발전설비구성에 미치는 영향분석: 제3차 신재생에너지 기술개발 및 이용.보급 기본계획 기준)

  • Lee, Jin-Ho;Kim, Su-Duk
    • Journal of Environmental Science International
    • /
    • v.18 no.8
    • /
    • pp.867-876
    • /
    • 2009
  • Although renewable power is regarded a way to active response to climate change, the stability of whole power system could be a serious problem in the future due to its uncertainties such as indispatchableness and intermittency. From this perspective, the peak time impact of stochastic wind power generation is estimated using simulation method up to year 2030 based on the 3rd master plan for the promotion of new and renewable energy on peak time. Result shows that the highest probability of wind power impact on peak time power supply could be up to 4.41% in 2030. The impact of wind power generation on overall power mix is also analyzed up to 2030 using SCM model. The impact seems smaller than expectation, however, the estimated investment cost to make up such lack of power generation in terms of LNG power generation facilities is shown to be a significant burden to existing power companies.

A Study on the GENCO Adaptive Strategy for the Greenhouse Gas Mitigation Policy (온실가스 감축정책에 따른 발전사업자의 대응 방안에 관한 연구)

  • Choi, Dong-Chan;Han, Seok-Man;Kim, Bal-Ho H.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.522-533
    • /
    • 2012
  • This paper presents an adaptive strategy of GENCOs for reducing the greenhouse gas by fuel mix change. Fuel mix stands for generation capacity portfolio composed of different fuel resources. Currently, the generation sector of power industry in Korea is heavily dependent on fossil fuels, therefore it is required to change the fuel mix gradually into more eco-friendly way based on renewable energies. The generation costs of renewable energies are still expensive compared to fossil fueled resources. This is why the adaptive change is more preferred at current stage and this paper proposes an optimal strategy for capacity planning based on multiple environmental scenarios on the time horizon. This study used the computer program tool named GATE-PRO (Generation And Transmission Expansion PROgram), which is a mixed-integer non-linear program developed by Hongik university and Korea Energy Economics Institute. The simulations have been carried out with the priority allocation method in the program to determine the optimal mix of NRE(New Renewable Energy). Through this process, the result proposes an economic fuel mix under emission constraints compatible with the greenhouse gas mitigation policy of the United Nations.

Study on Water / Energy / Mutual-changing Technology by RO/PRO Process (RO/PRO 공정에 의한 물/에너지/상호변환기술에 관한 연구)

  • Choi, Youngkwon;Yun, Taekgeun;Sohn, Jinsik;Lee, Sangho;Choi, June-Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.1
    • /
    • pp.61-65
    • /
    • 2013
  • Water is an integral part of energy production because it is used directly in many power generation systems such as hydroelectric power plants and thermoelectric power plants. Water is also used extensively in energy-resource extraction, oil, natural gas, and alternative fuels refining and processing. Recently, osmotic power systems using seawater and freshwater has been also investigated to produce electricity in a sustainable way. This study focused on the use of RO and PRO for the mutual conversion of water and energy. This system allows the production of water from seawater if there is not enough water. It can also generate electricity from salinity gradient of brine water and fresh water if there is not enough energy. To demonstrate the feasibility of this technology, a set of laboratory-scale experiments were carried out using a specially-designed RO/PRO system. The efficiency of energy conversion was theoretically estimated based on the results from the experiments. The results indicated that water and energy could be easily converted using a single device. Nevertheless, a lack of optimum membrane for this purpose was identified as a major barrier for practical application.

Correlation Analysis of Wind and Solar Power Generation Pattern for Modeling of Renewable Energy (신재생에너지 모델링을 위한 풍력 및 태양광 발전 출력 패턴 상관관계 분석)

  • Kim, Min-Jeong;Park, Young-Sik;Park, Jong-Bae;Roh, Jae-Hyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1823-1831
    • /
    • 2011
  • When the RPS(Renewable Portfolio Standards) becomes effective in 2012, the use of renewable energy will be dramatically increased. However, there are no production simulations and demand supply programs that reflect the characteristics of the renewable energy. This paper analyzes correlations of the domestic wind power and solar power generation pattern in different areas and those of these sources' output and load pattern. Based on the regional correlation analysis, an appropriate method that uses a average output of the renewable energy or another modeling that takes account of uncertainty could be selected. Because it's output is dependent on weather condition, we can not control the generation of renewable energy, that is the reason why the correlation between the load and output pattern of sources can be helpful to determine whether the renewable energy is modeled as a generator or load modifier. Through this analysis, a basis will be provided in order to properly model the renewable energy source.

A Study on the Estimation of Optimal ESS Capacity Considering REC Weighting Scheme (REC 가중치를 고려한 최적 ESS 용량 산정에 관한 연구)

  • Lee, Sungwoo;Kim, Hyoungtae;Shin, Hansol;Kim, Tae Hyun;Kim, Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.8
    • /
    • pp.1009-1018
    • /
    • 2018
  • As the generation of renewable energy increases rapidly, the stability of the grid due to its intermittency becomes a problem. The most appropriate way to solve this problem is to combine and operate the renewable generators with the ESS(Energy Storage System). However, since the revenues of operating the ESS are less than the investment cost, many countries are implementing various incentive policies for encouraging investment of the ESS. In this paper we estimated optimal capacity of the ESS to maximize profits of renewable energy generation businesses under the incentive policy of Korea and analyzed the impact of the incentive policy on the future electric power system of Jeju island. The simulation results show that the incentive policy has significantly improved the profitability of the renewable energy businesses generation business. But the volatility of the net demand has increased as the energy stored in the ESS is discharged intensively at the time of the incentive application.