• Title/Summary/Keyword: energy forecasting

Search Result 318, Processing Time 0.029 seconds

Chance-constrained Scheduling of Variable Generation and Energy Storage in a Multi-Timescale Framework

  • Tan, Wen-Shan;Abdullah, Md Pauzi;Shaaban, Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1709-1718
    • /
    • 2017
  • This paper presents a hybrid stochastic deterministic multi-timescale scheduling (SDMS) approach for generation scheduling of a power grid. SDMS considers flexible resource options including conventional generation flexibility in a chance-constrained day-ahead scheduling optimization (DASO). The prime objective of the DASO is the minimization of the daily production cost in power systems with high penetration scenarios of variable generation. Furthermore, energy storage is scheduled in an hourly-ahead deterministic real-time scheduling optimization (RTSO). DASO simulation results are used as the base starting-point values in the hour-ahead online rolling RTSO with a 15-minute time interval. RTSO considers energy storage as another source of grid flexibility, to balance out the deviation between predicted and actual net load demand values. Numerical simulations, on the IEEE RTS test system with high wind penetration levels, indicate the effectiveness of the proposed SDMS framework for managing the grid flexibility to meet the net load demand, in both day-ahead and real-time timescales. Results also highlight the adequacy of the framework to adjust the scheduling, in real-time, to cope with large prediction errors of wind forecasting.

Analysis of LNG Perspectives for EERS (EERS시행을 위한 천연가스 에너지절감 추이분석)

  • Kim, Yong-Ha;Woo, Sung-Min;Park, Hwa-Young;Kim, Euy-Kyung;Yoo, Jeong-Hee
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.7-12
    • /
    • 2014
  • This paper suggest mandatory target predestinator of natural gas wholesale and retail provider will set appropriate target. To analysis natural gas energy saving trend forecast, reduce natural gas forecast and using technology and forecast analysis for equipment is draw based on result of developing tool that more detailed gas field. Also this paper calculate effect on energy saving through various scenarios, efficiency consideration of gas equipment and subsidy condition.

The System Dynamics Model Development for Forecasting the Capacity of Renewables (신재생에너지 보급량 예측을 위한 시스템다이내믹스 모델 개발)

  • Kim, Hyun-Shil;Ko, Kyung-Ho;Ahn, Nam-Sung;Cho, Byung-Oke
    • Korean System Dynamics Review
    • /
    • v.7 no.2
    • /
    • pp.35-56
    • /
    • 2006
  • Korea is implementing strong regulatory derives such as Feed in Tariff to provide incentives for renewable energy developers. But if the government is planning to increase the renewable capacity with only "Price policy" not considering the investors behavior in the competitive electricity market, the policy would be failed. It is necessary system thinking and simulation model analysis to decide government's incentive goal. This study is focusing on the assesment of the competitiveness of renewable energy with the current Feed in Tariff incentives compared to the traditional energy source, specially coal and gas. The simulation results show that the market penetration of renewable energy with the current Feed-in-Tariff level is about 60-70% of the government goal under condition that the solar energy and fuel cell are assumed to provide the whole capacity set in the governmental goal. If the contribution from solar and fuel cell is lower than planned, the total penetration of renewable energy will be dropped more. Notably, Wind power turned out to be proved only 10% of government goal because of its low availability.

  • PDF

The Establishment of Walking Energy-Weighted Visibility ERAM Model to Analyze the 3D Vertical and Horizontal Network Spaces in a Building (3차원 수직·수평 연결 네트워크 건축 공간분석을 위한 보행에너지 가중 Visibility ERAM 모델 구축)

  • Choi, Sung-Pil;Piao, Gen-Song;Choi, Jae-Pil
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.11
    • /
    • pp.23-32
    • /
    • 2018
  • The purpose of this study is to establish a walking energy weighted ERAM model that can predict the pedestrian volume by the connection structure of the vertical and horizontal spaces within a three-dimensional building. The process of building a walking-energy weighted ERAM model is as follows. First, the spatial graph was used to reproduce three-dimensional buildings with vertical and horizontal spatial connection structures. Second, the walking energy was measured on the spatial graph. Third, ERAM model was used to apply weights with spatial connection properties in random walking environment, and the walking energy weights were applied to the ERAM model to calculate the walk energy weighted ERAM values and visualize the distribution of pedestrian flow. To verify the validation of the established model, existing and proposed spatial analysis models were compared to real space. The results of this study are as follows : The model proposed in this study showed as much elaborated estimation of pedestrian traffic flow in real space as in traditional spatial analysis models, and also it showed much higher level of forecasting pedestrian traffic flow in real space than existing models.

An Energy Demand Forecasting Model for the Residential and Commercial Sector (민수부문의 에너지원별 수요예측모형)

  • 유병우
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.8 no.2
    • /
    • pp.45-56
    • /
    • 1983
  • This paper presents a generalized fuel choice model in which restrictive constraints on cross-price coefficients as Baughman-Joskow-FEA Logit Model need not be imposed, but all demand elasticities are uniquely determined. The model is applied to estimating aggregate energy demand and fuel choices for the residential and commercial sector. The structural equations are estimated by a generalized least squares procedure using national-level EPB, KDI, BK, KRIS, MOER data for 1965 and 1980, and other related reports. The econometric results support the argument that “third-price” and “fourth-price” coefficients should not be constrained in estimating relative market share models. Furthermore, by using this fuel choice model, it has forecasted energy demands by fuel sources in, the residential and commercial sector until 1991. The results are turned out good estimates to compare with existing demands forecasted from other institutes.

  • PDF

Short-term Load Forecasting Using Artificial Neural Network (인공신경망을 이용한 단기 부하예측모형)

  • Park, Moon-Hee
    • Journal of Energy Engineering
    • /
    • v.6 no.1
    • /
    • pp.68-76
    • /
    • 1997
  • This paper presents a new neural network training algorithm which reduces the required training time considerably and overcomes many of the shortcomings presented by the conventional back-propagation algorithm. The algorithm uses a modified form of the back-propagation algorithm to minimize the mean squared error between the desired and actual outputs with respect to the inputs to the nonlinearities. Artificial Neural Network (ANN) model using the new algorithm is applied to forecast the short-term electric load. Inputs to the ANN are past loads and the output of the ANN is the hourly load forecast for a given day.

  • PDF

Relationship Analysis of Power Consumption Pattern and Environmental Factor for a Consumer's Short-term Demand Forecast (전력소비자의 단기수요예측을 위한 전력소비패턴과 환경요인과의 관계 분석)

  • Ko, Jong-Min;Song, Jae-Ju;Kim, Young-Il;Yang, Il-Kwon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.1956-1963
    • /
    • 2010
  • Studies on the development of various energy management programs and real-time bidirectional information infrastructures have been actively conducted to promote the reduction of power demands and CO2 emissions effectively. In the conventional energy management programs, the demand response program that can transition or transfer the power use spontaneously for power prices and other signals has been largely used throughout the inside and outside of the country. For measuring the effect of such demand response program, it is necessary to exactly estimate short-term loads. In this study, the power consumption patterns in both individual and group consumers were analyzed to estimate the exact short-term loads, and the relationship between the actual power consumption and seasonal factors was also analyzed.

Impact of Hull Condition and Propeller Surface Maintenance on Fuel Efficiency of Ocean-Going Vessels

  • Tien Anh Tran;Do Kyun Kim
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.181-189
    • /
    • 2023
  • The fuel consumption of marine diesel engines holds paramount importance in contemporary maritime transportation and shapes energy efficiency strategies of ocean-going vessels. Nonetheless, a noticeable gap in knowledge prevails concerning the influence of ship hull conditions and propeller roughness on fuel consumption. This study bridges this gap by utilizing artificial intelligence techniques in Matlab, particularly convolutional neural networks (CNNs) to comprehensively investigate these factors. We propose a time-series prediction model that was built on numerical simulations and aimed at forecasting ship hull and propeller conditions. The model's accuracy was validated through a meticulous comparison of predictions with actual ship-hull and propeller conditions. Furthermore, we executed a comparative analysis juxtaposing predictive outcomes with navigational environmental factors encompassing wind speed, wave height, and ship loading conditions by the fuzzy clustering method. This research's significance lies in its pivotal role as a foundation for fostering a more intricate understanding of energy consumption within the realm of maritime transport.

A Review on Performance Prediction of Marine Fuel Cells (선박용 연료전지 성능 예측 방법에 관한 고찰)

  • EUNJOO PARK;JINKWANG LEE
    • Journal of Hydrogen and New Energy
    • /
    • v.35 no.4
    • /
    • pp.437-450
    • /
    • 2024
  • Sustainable shipping depends on eco-friendly energy solutions. This paper reviews methods for predicting marine fuel cell performance, including empirical approaches, physical modeling, data-driven techniques, and hybrid methods. Accurate prediction models tailored to the marine environment's unique conditions are crucial for operational efficiency. By evaluating the strengths and weaknesses of each method, this study provides a comprehensive analysis of effective strategies for forecasting polymer electrolyte membrane fuel cell and solid oxide fuel cell performance in marine applications. These insights contribute to the advancement of eco-friendly shipping technologies and enhance fuel cell performance in challenging marine environments.

Drought Forecasting Using the Multi Layer Perceptron (MLP) Artificial Neural Network Model (다층 퍼셉트론 인공신경망 모형을 이용한 가뭄예측)

  • Lee, Joo-Heon;Kim, Jong-Suk;Jang, Ho-Won;Lee, Jang-Choon
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.12
    • /
    • pp.1249-1263
    • /
    • 2013
  • In order to minimize the damages caused by long-term drought, appropriate drought management plans of the basin should be established with the drought forecasting technology. Further, in order to build reasonable adaptive measurement for future drought, the duration and severity of drought must be predicted quantitatively in advance. Thus, this study, attempts to forecast drought in Korea by using an Artificial Neural Network Model, and drought index, which are the representative statistical approach most frequently used for hydrological time series forecasting. SPI (Standardized Precipitation Index) for major weather stations in Korea, estimated using observed historical precipitation, was used as input variables to the MLP (Multi Layer Perceptron) Neural Network model. Data set from 1976 to 2000 was selected as the training period for the parameter calibration and data from 2001 to 2010 was set as the validation period for the drought forecast. The optimal model for drought forecast determined by training process was applied to drought forecast using SPI (3), SPI (6) and SPI (12) over different forecasting lead time (1 to 6 months). Drought forecast with SPI (3) shows good result only in case of 1 month forecast lead time, SPI (6) shows good accordance with observed data for 1-3 months forecast lead time and SPI (12) shows relatively good results in case of up to 1~5 months forecast lead time. The analysis of this study shows that SPI (3) can be used for only 1-month short-term drought forecast. SPI (6) and SPI (12) have advantage over long-term drought forecast for 3~5 months lead time.