• Title/Summary/Keyword: energy forecasting

Search Result 318, Processing Time 0.06 seconds

Application of Big Data and Machine-learning (ML) Technology to Mitigate Contractor's Design Risks for Engineering, Procurement, and Construction (EPC) Projects

  • Choi, Seong-Jun;Choi, So-Won;Park, Min-Ji;Lee, Eul-Bum
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.823-830
    • /
    • 2022
  • The risk of project execution increases due to the enlargement and complexity of Engineering, Procurement, and Construction (EPC) plant projects. In the fourth industrial revolution era, there is an increasing need to utilize a large amount of data generated during project execution. The design is a key element for the success of the EPC plant project. Although the design cost is about 5% of the total EPC project cost, it is a critical process that affects the entire subsequent process, such as construction, installation, and operation & maintenance (O&M). This study aims to develop a system using machine-learning (ML) techniques to predict risks and support decision-making based on big data generated in an EPC project's design and construction stages. As a result, three main modules were developed: (M1) the design cost estimation module, (M2) the design error check module, and (M3) the change order forecasting module. M1 estimated design cost based on project data such as contract amount, construction period, total design cost, and man-hour (M/H). M2 and M3 are applications for predicting the severity of schedule delay and cost over-run due to design errors and change orders through unstructured text data extracted from engineering documents. A validation test was performed through a case study to verify the model applied to each module. It is expected to improve the risk response capability of EPC contractors in the design and construction stage through this study.

  • PDF

The improvement in operating rules of Cost Based Pool(CBP) considering the increasing Renewable Energy Capacity (신재생에너지 보급확대에 따른 국내전력시장 운영방안)

  • Lee, Jae-Gul;Nam, Su-Chul;Shin, Jeong-Hoon;Kim, Tae-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.580-583
    • /
    • 2008
  • As the construction of renewable energy generators is on the rise and gets bigger in size, researchers pay more and more attention to the impact of such facilities on the power market as well as on the stability of power grid system. In Korea, while studies on the latter, including calculating the marginal capacity of renewable energy generators, is being made, those on the former has not yet been performed. As such, this paper analyses the impact of a big renewable energy generators on the price and transaction cost of domestic power market and proposes ideas to minimize such influence by applying the technology of forecasting renewable energy.

  • PDF

Optimal Electric Energy Subscription Policy for Multiple Plants with Uncertain Demand

  • Nilrangsee, Puvarin;Bohez, Erik L.J.
    • Industrial Engineering and Management Systems
    • /
    • v.6 no.2
    • /
    • pp.106-118
    • /
    • 2007
  • This paper present a new optimization model to generate aggregate production planning by considering electric cost. The new Time Of Switching (TOS) electric type is introduced by switching over Time Of Day (TOD) and Time Of Use (TOU) electric types to minimize the electric cost. The fuzzy demand and Dynamic inventory tracking with multiple plant capacity are modeled to cover the uncertain demand of customer. The constraint for minimum hour limitation of plant running per one start up event is introduced to minimize plants idle time. Furthermore; the Optimal Weight Moving Average Factor for customer demand forecasting is introduced by monthly factors to reduce forecasting error. Application is illustrated for multiple cement mill plants. The mathematical model was formulated in spreadsheet format. Then the spreadsheet-solver technique was used as a tool to solve the model. A simulation running on part of the system in a test for six months shows the optimal solution could save 60% of the actual cost.

Locational Marginal Price Forecasting Using Artificial Neural Network (역전파 신경회로망 기반의 단기시장가격 예측)

  • Song Byoung Sun;Lee Jeong Kyu;Park Jong Bae;Shin Joong Rin
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.698-700
    • /
    • 2004
  • Electric power restructuring offers a major change to the vertically integrated utility monopoly. Deregulation has had a great impact on the electric power industry in various countries. Bidding competition is one of the main transaction approaches after deregulation. The energy trading levels between market participants is largely dependent on the short-term price forecasts. This paper presents the short-term System Marginal Price (SMP) forecasting implementation using backpropagation Neural Network in competitive electricity market. Demand and SMP that supplied from Korea Power Exchange (KPX) are used by a input data and then predict SMP. It needs to analysis the input data for accurate prediction.

  • PDF

Short-term demand forecasting method at both direction power exchange which uses a data mining (데이터 마이닝을 이용한 양방향 전력거래상의 단기수요예측기법)

  • Kim Hyoung Joong;Lee Jong Soo;Shin Myong Chul;Choi Sang Yeoul
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.722-724
    • /
    • 2004
  • Demand estimates in electric power systems have traditionally consisted of time-series analyses over long time periods. The resulting database consisted of huge amounts of data that were then analyzed to create the various coefficients used to forecast power demand. In this research, we take advantage of universally used analysis techniques analysis, but we also use easily available data-mining techniques to analyze patterns of days and special days(holidays, etc.). We then present a new method for estimating and forecasting power flow using decision tree analysis. And because analyzing the relationship between the estimate and power system ceiling Trices currently set by the Korea Power Exchange. We included power system ceiling prices in our estimate coefficients and estimate method.

  • PDF

Development of solar radiation forecasting system using clod cover information (운량 정보를 활용한 일사량 예측시스템의 개발)

  • Yun, ChangYeol;Jo, Dokki;Kim, GwangDeuk;Kang, YongHeack
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.131-131
    • /
    • 2011
  • 태양광 및 태양열 설비의 효율적인 관리를 위해서는 관련 일사정보가 사전정보로 제공되어 시스템 운용을 위한 입력인자로 활용되어야 한다. 특히 전력그리드에 연계되어 설비가 활용된다고 하면, 그 에너지 공급이 불규칙적인 신재생에너지원의 특성으로 인해 에너지 공급량의 예측이 선행되어 기존의 전력공급체계가 이를 지원할 수 있는 모델과 시스템이 구비되어야 한다. 기존의 다양한 연구들이 한정된 국소지점에 대해 다양한 예측기법을 적용하여 평가를 실시하였지만, 장기간의 결과 축적이 이루어지지 못해 그 신뢰성 확보에 어려움을 겪고 있다. 본 연구에서는 현재 한국에너지기술연구원에서 관리되는 일사정보를 활용하여 청명한 날의 표준 일사 데이터베이스를 생성하고, 기상청에서 RSS(Rich Site Summary) 형태로 지원하는 운량정보를 이용하여 3시간 이상의 미래정보를 계속적으로 산출할 수 있는 시스템을 제작하고자 하였다.

  • PDF

Short-term load forecasting using compact neural networks (최소 구조 신경회로망을 이용한 단기 전력 수요 예측)

  • Ha, Seong-Kwan;Song, Kyung-Bin
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.91-93
    • /
    • 2004
  • Load forecasting is essential in order to supply electrical energy stably and economically in power systems. ANNs have flexibility to predict a nonlinear feature of load profiles. In this paper, we selected just the necessary input variables used in the paper(2) which is based on the phase-space embedding of a load time-series and reviewing others. So only 5 input variables were selected to forecast for spring, fall and winter season and another input considering temperature sensitivity is added during the summer season. The training cases are also selected from all previous data composed training cases of a 7-day, 14-day and 30-day period. Finally, we selected the training case of a 7-day period because it can be used in STLF without sacrificing the accuracy of the forecast. This allows more compact ANNs, smaller training cases. Consequently, test results show that compact neural networks can be forecasted without sacrificing the accuracy.

  • PDF

Analysis of Apartment Power Consumption and Forecast of Power Consumption Based on Deep Learning (공동주택 전력 소비 데이터 분석 및 딥러닝을 사용한 전력 소비 예측)

  • Yoo, Namjo;Lee, Eunae;Chung, Beom Jin;Kim, Dong Sik
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1373-1380
    • /
    • 2019
  • In order to increase energy efficiency, developments of the advanced metering infrastructure (AMI) in the smart grid technology have recently been actively conducted. An essential part of AMI is analyzing power consumption and forecasting consumption patterns. In this paper, we analyze the power consumption and summarized the data errors. Monthly power consumption patterns are also analyzed using the k-means clustering algorithm. Forecasting the consumption pattern by each household is difficult. Therefore, we first classify the data into 100 clusters and then predict the average of the next day as the daily average of the clusters based on the deep neural network. Using practically collected AMI data, we analyzed the data errors and could successfully conducted power forecasting based on a clustering technique.

A Study on Statistical Forecasting Models of PM10 in Pohang Region by the Variable Transformation (변수변환을 통한 포항지역 미세먼지의 통계적 예보모형에 관한 연구)

  • Lee, Yung-Seop;Kim, Hyun-Goo;Park, Jong-Seok;Kim, Hee-Kyung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.5
    • /
    • pp.614-626
    • /
    • 2006
  • Using the data of three environmental monitoring sites in Pohang area(KME112, KME113, and KME114), statistical forecasting models of the daily maximum and mean values of PM10 have been developed. Since the distributions of the daily maximum and mean PM10 values are skewed, which are similar to the Weibull distribution, these values were log-transformed to increase prediction accuracy by approximating the normal distribution. Three statistical forecasting models, which are regression, neural networks(NN) and support vector regression(SVR), were built using the log-transformed response variables, i.e., log(max(PM10)) or log(mean (PM10)). Also, the forecasting models were validated by the measure of RMSE, CORR, and IOA for the model comparison and accuracy. The improvement rate of IOA before and after the log-transformation in the daily maximum PM10 prediction was 12.7% for the regression and 22.5% for NN. In particular, 42.7% was improved for SVR method. In the case of the daily mean PM10 prediction, IOA value was improved by 5.1% for regression, 6.5% for NN, and 6.3% for SVR method. As a conclusion, SVR method was found to be performed better than the other methods in the point of the model accuracy and fitness views.

MapReduce-based Localized Linear Regression for Electricity Price Forecasting (전기 가격 예측을 위한 맵리듀스 기반의 로컬 단위 선형회귀 모델)

  • Han, Jinju;Lee, Ingyu;On, Byung-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.4
    • /
    • pp.183-190
    • /
    • 2018
  • Predicting accurate electricity prices is an important task in the electricity trading market. To address the electricity price forecasting problem, various approaches have been proposed so far and it is known that linear regression-based approaches are the best. However, the use of such linear regression-based methods is limited due to low accuracy and performance. In traditional linear regression methods, it is not practical to find a nonlinear regression model that explains the training data well. If the training data is complex (i.e., small-sized individual data and large-sized features), it is difficult to find the polynomial function with n terms as the model that fits to the training data. On the other hand, as a linear regression model approximating a nonlinear regression model is used, the accuracy of the model drops considerably because it does not accurately reflect the characteristics of the training data. To cope with this problem, we propose a new electricity price forecasting method that divides the entire dataset to multiple split datasets and find the best linear regression models, each of which is the optimal model in each dataset. Meanwhile, to improve the performance of the proposed method, we modify the proposed localized linear regression method in the map and reduce way that is a framework for parallel processing data stored in a Hadoop distributed file system. Our experimental results show that the proposed model outperforms the existing linear regression model. Specifically, the accuracy of the proposed method is improved by 45% and the performance is faster 5 times than the existing linear regression-based model.