• Title/Summary/Keyword: energy forecasting

Search Result 318, Processing Time 0.024 seconds

Deep Neural Network Model For Short-term Electric Peak Load Forecasting (단기 전력 부하 첨두치 예측을 위한 심층 신경회로망 모델)

  • Hwang, Heesoo
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.5
    • /
    • pp.1-6
    • /
    • 2018
  • In smart grid an accurate load forecasting is crucial in planning resources, which aids in improving its operation efficiency and reducing the dynamic uncertainties of energy systems. Research in this area has included the use of shallow neural networks and other machine learning techniques to solve this problem. Recent researches in the field of computer vision and speech recognition, have shown great promise for Deep Neural Networks (DNN). To improve the performance of daily electric peak load forecasting the paper presents a new deep neural network model which has the architecture of two multi-layer neural networks being serially connected. The proposed network model is progressively pre-learned layer by layer ahead of learning the whole network. For both one day and two day ahead peak load forecasting the proposed models are trained and tested using four years of hourly load data obtained from the Korea Power Exchange (KPX).

A Study on Thermal Environment Analysis of a Greenhouse (시설원예용 난방온실의 온열환경 분석에 관한 연구)

  • Song, Lei;Park, Youn Cheol
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.3
    • /
    • pp.15-20
    • /
    • 2018
  • To study the effects of solar energy in a greenhouse, outdoor air temperature and wind speed on inside air temperature, a simulation model for forecasting the greenhouse air temperature was conducted on the basis of the energy and mass balance theory. Application of solar energy to the greenhouse is major area in the renewable energy research and development in order to save energy. Recently, considering the safety and efficiency of the heating of greenhouse, clean energy such as geothermal and solar energy has received much attention. The analysed greenhouse has $50m^2$ of ground area which located in jocheon-ri of Jeju Province. Experiments were carried out to collect data to validate the model. The results showed that the simulated air temperature inside a plastic greenhouse agreed well with the measured data.

Short-and Mid-term Power Consumption Forecasting using Prophet and GRU (Prophet와 GRU을 이용하여 단중기 전력소비량 예측)

  • Nam Rye Son;Eun Ju Kang
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.18-26
    • /
    • 2023
  • The building energy management system (BEMS), a system designed to efficiently manage energy production and consumption, aims to address the variable nature of power consumption within buildings due to their physical characteristics, necessitating stable power supply. In this context, accurate prediction of building energy consumption becomes crucial for ensuring reliable power delivery. Recent research has explored various approaches, including time series analysis, statistical analysis, and artificial intelligence, to predict power consumption. This paper analyzes the strengths and weaknesses of the Prophet model, choosing to utilize its advantages such as growth, seasonality, and holiday patterns, while also addressing its limitations related to data complexity and external variables like climatic data. To overcome these challenges, the paper proposes an algorithm that combines the Prophet model's strengths with the gated recurrent unit (GRU) to forecast short-term (2 days) and medium-term (7 days, 15 days, 30 days) building energy consumption. Experimental results demonstrate the superior performance of the proposed approach compared to conventional GRU and Prophet models.

Forecasting the Grid Parity of Solar Photovoltaic Energy Using Two Factor Learning Curve Model (2요인 학습곡선 모형을 이용한 한국의 태양광 발전 그리드패리티 예측)

  • Park, Sung-Joon;Lee, Deok Joo;Kim, Kyung-Taek
    • IE interfaces
    • /
    • v.25 no.4
    • /
    • pp.441-449
    • /
    • 2012
  • Solar PV(photovoltaic) is paid great attention to as a possible renewable energy source to overcome recent global energy crisis. However to be a viable alternative energy source compared with fossil fuel, its market competitiveness should be attained. Grid parity is one of effective measure of market competitiveness of renewable energy. In this paper, we forecast the grid parity timing of solar PV energy in Korea using two factor learning curve model. Two factors considered in the present model are production capacity and technological improvement. As a result, it is forecasted that the grid parity will be achieved in 2019 in Korea.

Forecasting Renewable Energy Using Delphi Survey and the Economic Evaluation of Long-Term Generation Mix (델파이 활용 신재생 에너지 수요예측과 장기전원 구성의 경제성 평가)

  • Koo, Hoonyoung;Min, Daiki
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.3
    • /
    • pp.183-191
    • /
    • 2013
  • We address the power generation mix problem that considers not only nuclear and fossil fuels such as oil, coal and LNG but also renewable energy technologies. Unlike nuclear or other generation technologies, the expansion plan of renewable energy is highly uncertain because of its dependency on the government policy and uncertainty associated with technology improvements. To address this issue, we conduct a delphi survey and forecast the capacity of renewable energy. We further propose a stochastic mixed integer programming model that determines an optimal capacity expansion and the amount of power generation using each generation technology. Using the proposed model, we test eight generation mix scenarios and particularly evaluate how much the expansion of renewable energy contributes to the total costs for power generation in Korea. The evaluation results show that the use of renewable energy incurs additional costs.

Solar Power Generation Prediction Algorithm Using the Generalized Additive Model (일반화 가법모형을 이용한 태양광 발전량 예측 알고리즘)

  • Yun, Sang-Hui;Hong, Seok-Hoon;Jeon, Jae-Sung;Lim, Su-Chang;Kim, Jong-Chan;Park, Chul-Young
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.11
    • /
    • pp.1572-1581
    • /
    • 2022
  • Energy conversion to renewable energy is being promoted to solve the recently serious environmental pollution problem. Solar energy is one of the promising natural renewable energy sources. Compared to other energy sources, it is receiving great attention because it has less ecological impact and is sustainable. It is important to predict power generation at a future time in order to maximize the output of solar energy and ensure the stability and variability of power. In this paper, solar power generation data and sensor data were used. Using the PCC(Pearson Correlation Coefficient) analysis method, factors with a large correlation with power generation were derived and applied to the GAM(Generalized Additive Model). And the prediction accuracy of the power generation prediction model was judged. It aims to derive efficient solar power generation in the future and improve power generation performance.

A Study on the Electricity Demand Forecasting in Island (도서지역 전력수요예측모형 연구)

  • 이창호;채승용
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.11a
    • /
    • pp.271-280
    • /
    • 2002
  • 최근 우리나라 전력수급 환경은 전력수요의 지속적인 성장과 더불어 입지 및 환경문제, 전력설비 건설, 재원조달, 전력산업의 경쟁효율성 문제 등 새로운 문제들에 직면하고 있다. 또한 전력사업이 한국전력의 독점체제에서 발전, 송전, 배전으로 분할되고 경쟁체제로 변함에 따라 여러 가지 새로운 문제들에 직면하고 있다. 전력설비의 건설에 따른 투자는 사업기간이 길고 많은 비용이 소요됨으로 전력수요에 대한 정확한 예측이 무엇보다 중요하다.(중략)

  • PDF

Short-Term Load Forecast for Summer Special Light-Load Period (하계 특수경부하기간의 단기 전력수요예측)

  • Park, Jeong-Do;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.482-488
    • /
    • 2013
  • Load forecasting is essential to the economical and the stable power system operations. In general, the forecasting days can be classified into weekdays, weekends, special days and special light-load periods in short-term load forecast. Special light-load periods are the consecutive holidays such as Lunar New Years holidays, Korean Thanksgiving holidays and summer special light-load period. For the weekdays and the weekends forecast, the conventional methods based on the statistics are mainly used and show excellent results for the most part. The forecast algorithms for special days yield good results also but its forecast error is relatively high than the results of the weekdays and the weekends forecast methods. For summer special light-load period, none of the previous studies have been performed ever before so if the conventional methods are applied to this period, forecasting errors of the conventional methods are considerably high. Therefore, short-term load forecast for summer special light-load period have mainly relied on the experience of power system operation experts. In this study, the trends of load profiles during summer special light-load period are classified into three patterns and new forecast algorithms for each pattern are suggested. The proposed method was tested with the last ten years' summer special light-load periods. The simulation results show the excellent average forecast error near 2%.

Electricity forecasting model using specific time zone (특정 시간대 전력수요예측 시계열모형)

  • Shin, YiRe;Yoon, Sanghoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.2
    • /
    • pp.275-284
    • /
    • 2016
  • Accurate electricity demand forecasts is essential in reducing energy spend and preventing imbalance of the power supply. In forcasting electricity demand, we considered double seasonal Holt-Winters model and TBATS model with sliding window. We selected a specific time zone as the reference line of daily electric demand because it is least likely to be influenced by external factors. The forecasting performance have been evaluated in terms of RMSE and MAPE criteria. We used the observations ranging January 4, 2009 to December 31 for testing data. For validation data, the records has been used between January 1, 2012 and December 29, 2012.

Development of ARIMA-based Forecasting Algorithms using Meteorological Indices for Seasonal Peak Load (ARIMA모델 기반 생활 기상지수를 이용한 동·하계 최대 전력 수요 예측 알고리즘 개발)

  • Jeong, Hyun Cheol;Jung, Jaesung;Kang, Byung O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1257-1264
    • /
    • 2018
  • This paper proposes Autoregressive Integrated Moving Average (ARIMA)-based forecasting algorithms using meteorological indices to predict seasonal peak load. First of all, this paper observes a seasonal pattern of the peak load that appears intensively in winter and summer, and generates ARIMA models to predict the peak load of summer and winter. In addition, this paper also proposes hybrid ARIMA-based models (ARIMA-Hybrid) using a discomfort index and a sensible temperature to enhance the conventional ARIMA model. To verify the proposed algorithm, both ARIMA and ARIMA-Hybrid models are developed based on peak load data obtained from 2006 to 2015 and their forecasting results are compared by using the peak load in 2016. The simulation result indicates that the proposed ARIMA-Hybrid models shows the relatively improved performance than the conventional ARIMA model.