• Title/Summary/Keyword: energy dissipators

Search Result 9, Processing Time 0.018 seconds

Analytical investigation on lateral load responses of self-centering walls with distributed vertical dampers

  • Huang, Xiaogang;Zhou, Zhen;Zhu, Dongping
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.355-366
    • /
    • 2019
  • Self-centering wall (SCW) is a resilient and sustainable structural system which incorporates unbonded posttensioning (PT) tendons to provide self-centering (SC) capacity along with supplementary dissipators to dissipate seismic energy. Hysteretic energy dissipators are usually placed at two sides of SCWs to facilitate ease of postearthquake examination and convenient replacement. To achieve a good prediction for the skeleton curve of the wall, this paper firstly developed an analytical investigation on lateral load responses of self-centering walls with distributed vertical dampers (VD-SCWs) using the concept of elastic theory. A simplified method for the calculation of limit state points is developed and validated by experimental results and can be used in the design of the system. Based on the analytical results, parametric analysis is conducted to investigate the influence of damper and tendon parameters on the performance of VD-SCWs. The results show that the proposed approach has a better prediction accuracy with less computational effects than the Perez method. As compared with previous experimental results, the proposed method achieves up to 60.1% additional accuracy at the effective linear limit (DLL) of SCWs. The base shear at point DLL is increased by 62.5% when the damper force is increased from 0kN to 80kN. The wall stiffness after point ELL is reduced by 69.5% when the tendon stiffness is reduced by 75.0%. The roof deformation at point LLP is reduced by 74.1% when the initial tendon stress is increased from $0.45f_{pu}$ to $0.65f_{pu}$.

Testing and modelling of shape memory alloy plates for energy dissipators

  • Heresi, Pablo;Herrera, Ricardo A.;Moroni, Maria O.
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.883-900
    • /
    • 2014
  • Shape memory alloys (SMA) can dissipate energy through hysteresis cycles without significant residual deformation. This paper describes the fabrication and testing of copper-based SMA hourglass-shaped plates for use in energy dissipation devices and the development of a numerical model to reproduce the experiments. The plates were tested under cyclic flexural deformations, showing stable hysteresis cycles without strength degradation. A detailed nonlinear numerical model was developed and validated with the experimental data, using as input the constitutive relationship for the material determined from cyclic tests of material coupons under tension loading. The model adequately reproduces the experimental results. The study is focused on the exploitation of SMA in the martensite phase.

Analysis of Hydraulic Characteristics and Reduction of Bottom Velocity of Second Stilling Basin (2차 정수지의 수리특성 및 바닥 유속 저감효과 분석)

  • Jeong, Seokil;Lee, Ji Hun;Yoon, Jae-Seon;Lee, Seung Oh
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.134-140
    • /
    • 2018
  • Scour in the downstream of hydraulic structures such as apron induces to collapse due to abruptly increasing rainfall and discharge in streams and reaches. This is because the forcible jet from overflowing is not sufficiently dissipated by existing energy dissipators, and it continues to sweep the bed materials during flood events. In this study, a second stilling basin was proposed as a countermeasure and the energy dissipation efficiency of this structure was analyzed using 3D-dimensional numerical analysis. First, results from previous research and hydraulic tests were used to verify the accuracy of the numerical model. It showed that the second stilling basin played a definite role in reducing the bottom velocity, comparing with diminishing the energy dissipation when numerical tests were conducted under scaled field conditions in Korea. This means that the second stilling basin can be a countermeasure against scour in downstream. If more efficiency analysis of the second stilling basin would be performed in terms of energy dissipator for various types of hydraulic jump, it would be an alternative solution to scouring issues.

Effect of Damping Coefficients in Earthquakes Resistant Design with Viscous Dampers for Bridges (교량의 내진설계에 있어서 점성감쇠기능받침의 감쇠계수 영향평가)

  • 정상모
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.399-406
    • /
    • 2000
  • Viscous dampers have been utilized as bearings and STU`s (Shock Transmission Unit) in earthquake resistant designs for bridges. Some viscous dampers are used as energy dissipators on one hand, but some dampers such as STU`s are used as fixing devices during an earthquake on the other hand. This paper discusses the effect of viscous dampers on the response of bridge with respect to the magnitude of damping coefficients. For this purpose, a typical bridge was taken as an example, and time-history dynamic analysis have been carried out. The input seismic data used in the analyses are relevant to the response spectra in the Koreans design code. The results show that there is an optimum value of coefficient considered most effective in the design. A STU with a large value of coefficient seems to make its support fixed. The response of the bridge is not much sensitive to the variation of the damping coefficients.

  • PDF

Damping Effects of Fluid Viscous Dampers on the Seismic Response of Bridges (교량의 지진응답거동에 작용하는 액체점성감쇠기의 감쇠효과 분석)

  • 정상모;안창모
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.379-386
    • /
    • 2001
  • Fluid viscous dampers have been used as energy dissipators or STU's (Shock Transmission Unit) in earthquake resistant designs for bridges. Viscous dampers have many advantages compared to other friction type or visco-elastic type of dampers. They do neither increase internal pier forces due to their out of phase response, nor produce reaction forces at the low velocities associated with thermal movements. Therefore, they anable the super structure to restore itself perfectly after a severe movement dut to seismic excitations. This paper investigates the response of bridges designed with viscous dampers in regard to damping coefficients, properties of dampers, and arrangements of dampers. For this purpose, time-history dynamic analyses have been performed using a very simple model relevant to a typical bridge example. Based on the results, it presents some design duidelines on how to determine a proper damping ratio and on how to arrange dampers. In usual cases, damping coefficients corresponding to about 0.2-0.3 of damping ratios seem to be very effective in bridge designs.

  • PDF

An Experimental Study and the Design of the Rubber Laminated Lead Damper (탄성체 적층 납삽입 제진장치의 설계 및 특성시험)

  • Lee, Wan-Ha;Park, Jin-Young;Park, Jung-Woo;Kim, Ki-Man;Park, Kun-Nok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.165-170
    • /
    • 2011
  • A large number of seismic isolation systems have been developed since the early 1970s. They are basically a combination of elastomeric bearing and energy dissipators. The investigation described in this paper analyzes shear property and the frequency dependence of Lead Rubber Damper(LRD). Lead Rubber Damper is similar in shape and performance property to Lead Rubber Bearing. Experimental condition ranges from 20 to 200% in share strain and from 0.1 to 1.0Hz in frequency. When the shear strain is increased, effective stiffness and damping ratio are decreased. When the frequency is increased, change of the behavior characteristic is subtle.

  • PDF

Experimental Study of Flip-Bucket Type Hydraulic Energy Dissipator on Steep slope Channel (긴구배수로 감세공의 Filp Bucket형 이용연구)

  • 김영배
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.1
    • /
    • pp.2206-2217
    • /
    • 1971
  • Spillway and discharge channel of reservoirs require the Control of Large volume of water under high pressure. The energies at the downstream end of spillway or discharge channel are tremendous. Therefore, Some means of expending the energy of the high-velocity flow is required to prevent scour of the riverbed, minimize erosion, and prevent undermining structures or dam it self. This may be accomplished by Constructing an energy dissipator at the downstream end of spillway or discharge channel disigned to dissipated the excessive energy and establish safe flow Condition in the outlet channel. There are many types of energy dissipators, stilling basins are the most familar energy dissipator. In the stilling basin, most energies are dissipated by hydraulic jump. stilling basins have some length to cover hydraulic jump length. So stilling basins require much concrete works and high construction cost. Flip bucket type energy dissipators require less construction cost. If the streambed is composed of firm rock and it is certain that the scour will not progress upstream to the extent that the safety of the structure might be endangered, flip backet type energy dissipators are the most recommendable one. Following items are tested and studied with bucket radius, $R=7h_2$,(medium of $4h_2{\geqq}R{\geqq}10h_2$). 1. Allowable upstream channel slop of bucket. 2. Adequate bucket lip angle for good performance of flip bucket. Also followings are reviwed. 1. Scour by jet flow. 2. Negative pressure distribution and air movement below nappe flow. From the test and study, following results were obtained. 1. Upstream channel slope of bucket (S=H/L) should be 0.25<H/L<0.75 for good performance of flip bucket. 2. Adequated lip angle $30^{\circ}{\sim}40^{\circ}$ are more reliable than $20^{\circ}{\sim}30^{\circ}$ for the safety of structures.

  • PDF

Experimental Study on Downstream Local Scour of Free-Falling Jet (자유낙하수맥 하류부에서의 세굴에 관한 실험적 연구)

  • 윤세의;이종태
    • Water for future
    • /
    • v.28 no.4
    • /
    • pp.147-154
    • /
    • 1995
  • Scour characteristics of noncohesive bed materials at the downstream of free-falling jet were analyzed through hydraulic experiments. It was assumed that the downstream had no special energy dissipators. Flow characteristics of free falling jet from rectangular section were studied, and scour characteristics with and without mounds, which were generated at the downstream of the scour hole, were comparatively analyzed for various bed materials, discharges and tailwater depths. Not only the equilibrium scour depth but also the height of mound could be expressed as a function of densimetric Froude number. Densimetric Froude number had closer relationship with the equilibrium dimensionless scour depth than other dimensionless parameters. It was suggested that the mound effects should be considered at the design stage of bed protection works.

  • PDF

Mushroom skeleton to create rocking motion in low-rise steel buildings to improve their seismic performance

  • Mahdavi, Vahid;Hosseini, Mahmood;Gharighoran, Alireza
    • Earthquakes and Structures
    • /
    • v.15 no.6
    • /
    • pp.639-654
    • /
    • 2018
  • Rocking motion have been used for achieving the 'resilient buildings' against earthquakes in recent studies. Low-rise buildings, unlike the tall ones, because of their small aspect ratio tend to slide rather than move in rocking mode. However, since rocking is more effective in seismic response reduction than sliding, it is desired to create rocking motion in low-rise buildings too. One way for this purpose is making the building's structure rock on its internal bay(s) by reducing the number of bays at the lower part of the building's skeleton, giving it a mushroom form. In this study 'mushroom skeleton' has been used for creating multi-story rocking regular steel buildings with square plan to rock on its one-by-one bay central lowest story. To show if this idea is effective, a set of mushroom buildings have been considered, and their seismic responses have been compared with those of their conventional counterparts, designed based on a conventional code. Also, a set of similar buildings with skeleton stronger than code requirement, to have immediate occupancy (IO) performance level, have been considered for comparison. Seismic responses, obtained by nonlinear time history analyses, using scaled three-dimensional accelerograms of selected earthquakes, show that by using appropriate 'mushroom skeleton' the seismic performance of buildings is upgraded to mostly IO level, while all of the conventional buildings experience collapse prevention (CP) level or beyond. The strong-skeleton buildings mostly present IO performance level as well, however, their base shear and absolute acceleration responses are much higher than the mushroom buildings.