• Title/Summary/Keyword: energy dissipation performance

Search Result 739, Processing Time 0.025 seconds

Seismic Performance of PC Moment Frame with Plastic Shear Hinge (소성전단힌지를 갖는 PC 모멘트 골조의 내진성능)

  • Lim, Woo-Young;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.353-362
    • /
    • 2015
  • Cyclic loading tests for the PC moment frame with plastic shear hinges were performed to evaluate the seismic performance. The plastic shear hinges consisted of two steel plates were installed at the mid-length of the beam to connect the PC frames. Three shear links are existed in each steel plate. The three shear links were designed using shear force corresponding to the shear capacity of 50%, 75%, and 100% of the beam shear capacity. The proposed connections showed an efficient energy dissipation capacity and good structural performance. As a result, it is reasonable to design the plastic shear hinges using design shear capacity less than 100% of the beam shear capacity.

Probabilistic seismic assessment of mega buckling-restrained braced frames under near-fault ground motions

  • Veismoradi, Sajad;Darvishan, Ehsan
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.487-498
    • /
    • 2018
  • Buckling-restrained braces are passive control devices with high level of energy dissipation ability. However, they suffer from low post-yield stiffness which makes them vulnerable to severe ground motions, especially near-field earthquakes. Among the several methods proposed to improve resistance of BRB frames, mega-brace configuration can be a solution to increase frame lateral strength and stiffness and improve distribution of forces to prevent large displacement in braces. Due to the limited number of research regarding the performance of such systems, the current paper aims to assess seismic performance of BRB frames with mega-bracing arrangement under near-field earthquakes via a detailed probabilistic framework. For this purpose, a group of multi-story mega-BRB frames were modelled by OpenSEES software platform. In the first part of the paper, simplified procedures including nonlinear pushover and Incremental Dynamic Analysis were conducted for performance evaluation. Two groups of near-fault seismic ground motions (Non-pulse and Pulse-like records) were considered for analyses to take into account the effects of record-to-record uncertainties, as well as forward directivity on the results. In the second part, seismic reliability analyses are conducted in the context of performance based earthquake engineering. Two widely-known EDP-based and IM-based probabilistic frameworks are employed to estimate collapse potential of the structures. Results show that all the structures can successfully tolerate near-field earthquakes with a high level of confidence level. Therefore, mega-bracing configuration can be an effective alternative to conventional BRB bracing to withstand near-field earthquakes.

High performance fibre reinforced cement concrete slender structural walls

  • Ganesan, N.;Indira, P.V.;Seena., P.
    • Advances in concrete construction
    • /
    • v.2 no.4
    • /
    • pp.309-324
    • /
    • 2014
  • In the design of reinforced concrete structural walls, in order to ensure adequate inelastic displacement behaviour and to sustain deformation demands imposed by strong ground motions, special reinforcement is considered while designing. However, these would lead to severe reinforcement congestion and difficulties during construction. Addition of randomly distributed discrete fibres in concrete improves the flexural behaviour of structural elements because of its enhanced tensile properties and this leads to reduction in congestion. This paper deals with effect of addition of steel fibres on the behavior of high performance fibre reinforced cement concrete (HPFRCC) slender structural walls with the different volume fractions of steel fibres. The specimens were subjected to quasi static lateral reverse cyclic loading until failure. The high performance concrete (HPC) used was obtained based on the guidelines given in ACI 211.1 which was further modified by prof.Aitcin (1998). The volume fraction of the fibres used in this study varied from 0 to 1% with an increment of 0.5%. The results were analysed critically and appraised. The study indicates that the addition of steel fibres in the HPC structural walls enhances the first crack load, strength, initial stiffness and energy dissipation capacity.

Towards achieving the desired seismic performance for hybrid coupled structural walls

  • Hung, Chung-Chan;Lu, Wei-Ting
    • Earthquakes and Structures
    • /
    • v.9 no.6
    • /
    • pp.1251-1272
    • /
    • 2015
  • It is widely recognized that the preferred yielding mechanism for a hybrid coupled wall structure is that all coupling beams over the height of the structure yield in shear prior to formation of plastic hinges in structural walls. The objective of the study is to provide feasible approaches that are able to promote the preferred seismic performance of hybrid coupled walls. A new design methodology is suggested for this purpose. The coupling ratio, which represents the contribution of coupling beams to the resistance of system overturning moment, is employed as a fundamental design parameter. A series of nonlinear time history analyses on various representative hybrid coupled walls are carried out to examine the adequacy of the design methodology. While the proposed design method is shown to be able to facilitate the desired yielding mechanism in hybrid coupled walls, it is also able to reduce the adverse effects caused by the current design guidelines on the structural design and performance. Furthermore, the analysis results reveal that the state-of-the-art coupled wall design guidelines could produce a coupled wall structure failing to adequately exhaust the energy dissipation capacity of coupling beams before walls yield.

Study on Seismic Performance of Steel Structure with Precast Concrete Cladding Panel and Connector Considered as Structural Components (외부벽판과 연결부재를 구조요소로 취급한 경우 철골구조물의 내진성능에 관한 연구)

  • Byeon, Ji-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.2
    • /
    • pp.127-133
    • /
    • 2008
  • The purpose of this study is to investigate the seismic performance of both exterior precast concrete cladding panels and their connections on steel frame, when these cladding systems are considered as the structural components. The degrees of their participation of lateral stiffness to the main building are evaluated in terms of different heights of the cladding panels. Considering the cladding system as an integrated building provides additional lateral stiffness, as well as a mechanism for energy dissipation and this system can be used as one of an advanced passive seismic control system. Hysteresis behaviors of connectors are modeled and integrated into a nonlinear finite element analysis program, ABAQUS. The results show that connections play the most important role in structural cladding system and they improve seismic performance of overall building response.

Seismic performance of reinforced engineered cementitious composite shear walls

  • Li, Mo;Luu, Hieu C.;Wu, Chang;Mo, Y.L.;Hsu, Thomas T.C.
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.691-704
    • /
    • 2014
  • Reinforced concrete (RC) shear walls are commonly used for building structures to resist seismic loading. While the RC shear walls can have a high load-carrying capacity, they tend to fail in a brittle mode under shear, accompanied by forming large diagonal cracks and bond splitting between concrete and steel reinforcement. Improving seismic performance of shear walls has remained a challenge for researchers all over the world. Engineered Cementitious Composite (ECC), featuring incredible ductility under tension, can be a promising material to replace concrete in shear walls with improved performance. Currently, the application of ECC to large structures is limited due to the lack of the proper constitutive models especially under shear. In this paper, a new Cyclic Softening Membrane Model for reinforced ECC is proposed. The model was built upon the Cyclic Softening Membrane Model for reinforced concrete by (Hsu and Mo 2010). The model was then implemented in the OpenSees program to perform analysis on several cases of shear walls under seismic loading. The seismic response of reinforced ECC compared with RC shear walls under monotonic and cyclic loading, their difference in pinching effect and energy dissipation capacity were studied. The modeling results revealed that reinforced ECC shear walls can have superior seismic performance to traditional RC shear walls.

Performance Test of C-shape Steel Base Isolation System (C형 강재 지진격리장치의 성능시험)

  • Jung, Dae-Yu;Shim, Chul-Hwan;Park, Hyung-Ghee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.25-35
    • /
    • 2009
  • This paper introduces the performance of a newly developed base isolation system made from the combination of a polyurethane disk - attached pot bearing and C-shape steel dampers. Ultimate compressive load tests, ultimate rotation tests, dynamic tests, and dynamic load repeat tests have been completed to determine dynamic characteristics and to verify performance characteristics. The experimental results are compared with the analytic results. It is determined that all requirements for bridge bearing in the specifications are satisfied, and that adequate energy dissipation has occurred. The EDC and effective stiffness estimated by tests are similar to the theoretical values.

Performance Evaluation of R/C Beam-Column Joint According to Unbonded Rebar (비부착 철근 여부에 따른 RC 보-기둥 접합부의 성능평가)

  • Kwon, Min Ho;Jung, Woo Young;Jung, Jae Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.201-211
    • /
    • 2011
  • Many reinforced concrete structures have been constructed at the offshore in Korea and those are exposed in environments for long period. Due to that, the reinforcement of the structure faces possibility of corrosion by the salt damage. Such corrosions are effects on the bond performance between concrete and reinforcing bar as well as the performance of the structure. In this study, the performance of RC structure has been investigated when the reinforcing bars are totally bonded and unbonded in the structure. Through the experimental tests and finite element analyses of beam-column joint with bond and unbonded reinforcing bar, the energy dissipation capacity, strength, and crack distribution are compared and discussed.

Seismic Performance of Reinforced Concrete Frame Retrofitted with Opening-Isolated Type System (개구부 격리형 시스템으로 보강된 철근콘크리트 골조의 내진성능)

  • Park, Wan-Shin;Kim, Sun-Woo;Jung, Hyun-Seok
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.2
    • /
    • pp.137-144
    • /
    • 2020
  • The purpose of this study is to experimentally evaluate the effect of improving seismic performance by applying the details of seismic reinforcement to the reinforced concrete frame with non-seismic details while maintaining the original opening shape. In this study, based on CF specimens with specific seismic details, a total of four full scale specimens were designed and fabricated. The main variables are the width and spacing of steel dampers installed in the upper and lower parts of seismic reinforcement details, and the presence or absence of torsion springs installed in the hinges. As a result of the test, it was evaluated to be helpful for seismic retrofit and opening isolation of steel dampers installed at the upper and lower parts of the seismic reinforcement details and torsion springs installed at the joints. In particular, CFR2S specimens with torsion springs showed the best performance in terms of strength, stiffness and energy dissipation capacity with increasing displacement angle.

An Experimental Study on Seismic Performance of Reinforced Concrete Beam-Column Retrofitted with Replaceable Steel Haunch System (교체 가능한 강재 헌치 시스템으로 보강한 철근 콘크리트 보-기둥 구조물의 내진성능에 관한 실험적 연구)

  • Kim Yoon Sung;Kim Min Sook;Lee Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.1
    • /
    • pp.81-88
    • /
    • 2024
  • The purpose of this study is to experimentally analyze the seismic performance of beam-column specimens with vertical irregular, which were reinforced with RHS (Replaceable steel haunch system). a steel haunch system. To evaluate the seismic performance of the RHS, three specimens were manufactured and subjected to cycle loading tests. Retrofitted specimens have different beam-upper column stiffness ratio as a variable. The stiffness ratio of beam-upper column were considered to be 1.2 and 0.84. As a result of the test, the specimen reinforced with RHS showed improved maximum load and effective stiffness, and energy dissipation capacity compared to the non-retrofitted specimen with same beam-upper column stiffness ratio. The specimen with 0.84 beam-upper column stiffness ratio showed improved performance than the specimen with 12.