• Title/Summary/Keyword: energy dissipation performance

Search Result 739, Processing Time 0.026 seconds

An Analytical Study on the Optimum Application of Diaphragm in Circular Steel Piers (원형강교각의 다이아프램 최적 적용에 관한 해석적 연구)

  • Jang, Gab-Chul;Chang, Kyong-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.2 s.24
    • /
    • pp.91-96
    • /
    • 2007
  • To improve the land use of urban, Construction of the circular steel column is required recently. The circular steel columns have a advantage for improving a load carrying capacity as wall as reducing a effective section area. However, the circular steel columns under service load, such as earthquake, shows a tendency to cause local buckling and large deformation. To prevent these phenomena, use of diaphragm is considered. It is reported that longitudinal stiffeners has a effect on improving a buckling and fatigue performance of steel structures. The research of effect on diaphragm is not sufficient. Under monotonic and cyclic loadings diaphragm make a important role to prevent local buckling and deformation of used steel structures. Therefore, influence of diaphragm on performance of used steel structures is investigated. In this study, the influence of diaphragm on seismic and deformation performance of circular steel piers was investigated by using elastic-plastic finite element analysis considered geometrical and material non-linearity. The seismic performance of circular steel columns was evaluated for analytical parameter of manufactured part. The seismic performance of circular steel columns was clarified by comparing an energy dissipation of circular steel piers.

  • PDF

A Study on the Seismic Performance Improvement of Mid and Low-Rise RC Grid Structures Using Steel Slab Hysteretic Damper (강재 슬래브 이력형 댐퍼(SSHD)를 이용한 중·저층 RC 격자 구조물의 내진성능 향상에 관한 연구)

  • Kim, Dong Baek;Lee, In Duk;Choi, Jung Ho
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.3
    • /
    • pp.418-426
    • /
    • 2019
  • Purpose: After analyzing the seismic capability of low-rise RC grid structures with insufficient seismic performance, the purpose of the project is to install steel slab hysteretic dampers (SSHD) to improve the seismic performance of beams and columns, and to suggest measures to minimize damage to the structure and human damage when an earthquake occurs. Method: The evaluation of the seismic performance of a structure is reviewed based on the assumption that the seismic performance is identified for the grid-type subway systems that are not designed to be seismic resistant and the installation of an SSHD system, a method that minimizes construction period, if insufficient, is required. Result: After the application and reinforce of structure with SSHD, and the results of eigenvalue analysis are as follows. The natural periodicity of longitudinal direction was 0.55s and that of vertical direction was 0.58s. Conclusion: As results of cyclic load test of structure with SSHD, the shear rigidity of damper is 101%, the energy dissipation rate is 108% and, plastic rotation angle of all column and beam is satisfied for $I_o$ level and therefore it is judged that the reinforce effect is sufficient.

Assessment of the performance of composite steel shear walls with T-shaped stiffeners

  • Zarrintala, Hadi;Maleki, Ahmad;Yaghin, Mohammad Ali Lotfollahi
    • Earthquakes and Structures
    • /
    • v.23 no.3
    • /
    • pp.297-313
    • /
    • 2022
  • Composite steel plate shear wall (CSPSW) is a relatively novel structural system proposed to improve the performance of steel plate shear walls by adding one or two layers of concrete walls to the infill plate. In addition, the buckling of the infill steel plate has a significant negative effect on the shear strength and energy dissipation capacity of the overall systems. Accordingly, in this study, using the finite element (FE) method, the performance and behavior of composite steel shear walls using T-shaped stiffeners to prevent buckling of the infill steel plate and increase the capacity of CSPSW systems have been investigated. In this paper, after modeling composite steel plate shear walls with and without steel plates with finite element methods and calibration the models with experimental results, effects of parameters such as several stiffeners, vertical, horizontal, diagonal, and a combination of T-shaped stiffeners located in the composite wall have been investigated on the ultimate capacity, web-plate buckling, von-Mises stress, and failure modes. The results showed that the arrangement of stiffeners has no significant effect on the capacity and performance of the CSPSW so that the use of vertical or horizontal stiffeners did not have a significant effect on the capacity and performance of the CSPSW. On the other hand, the use of diagonal hardeners has potentially affected the performance of CSPSWs, increasing the capacity of steel shear walls by up to 25%.

Performance-based seismic design of a spring-friction damper retrofit system installed in a steel frame

  • Masoum M. Gharagoz;Seungho Chun;Mohamed Noureldin;Jinkoo Kim
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.173-183
    • /
    • 2024
  • This study investigates a new seismic retrofit system that utilizes rotational friction dampers and axial springs. The retrofit system involves a steel frame with rotational friction dampers (RFD) at beam-column joints and linear springs at the corners, providing energy dissipation and self-centering capabilities to existing structures. The axial spring acts as a self-centering mechanism that eliminates residual deformations, while the friction damper mitigates seismic damage. To evaluate the seismic performance of the proposed retrofit system, a series of cyclic loading tests were carried out on a steel beam-column subassembly equipped with the proposed devices. An analytical model was then developed to validate the experimental results. A performance point ratio (PPR) was presented to optimize the design parameters of the retrofit system, and a performance-based seismic design strategy was developed based on the PPR. The retrofit system's effectiveness and the presented performance-based design approach were evaluated through case study models, and the analysis results demonstrated that the developed retrofit system and the performance-based design procedure were effective in retrofitting structures for multi-level design objectives.

Ductile Behavior of High Strength Reinforced Concrete Beam-Column Joint (고강도 철근 및 고강도 콘크리트를 사용한 보-기둥 접합부의 연성거동)

  • 이정한;유영찬;이원호;정헌수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.537-540
    • /
    • 1999
  • The primary objective of this study is to make a contribution to the construction of 40~60 story R/C high rise building by developing the reinforcing details which can improve the seismic performance of high-strength (f'c=700kg/$\textrm{cm}^2$, fy=4000, 8000kg/$\textrm{cm}^2$) R/C beam-column joints. And the purpose of this study is to investigate experimentally the effect of load history on the total energy dissipation capacity of reinforced concrete flexural members. The reinforcing details which can make beam plastic hinging zones moved and spreaded from the column face is proposed to insure the ductile behavior of high-strength RC beam-column joints. The intermediate reinforcement which is horizontally anchored by interlinking each intermediate reinforcements is proposed and tested to examine the mechanical performance of proposed details. Main variables are the shape of the intermediate reinforcements and yield strength of rebars. From the test results, the newly proposed intermediate reinforcement details can move and spread the beam plastic hinging zone about 1.0d from the column face.

  • PDF

Improvement and Evaluation of Structural performance of Reinforced Concrete Infilled Masonry Frame with Restraining Factor of Frame under Load Reversals (반복하중을 받는 철근콘크리트 프레임면내 조적벽체의 골조 구속에 따른 구조성능 평가 및 개선)

  • 신종학;하기주;김광연;이희종;남왕교
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.541-546
    • /
    • 2001
  • Experimental programs were accomplished to improve and evaluate the structural performance of test specimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation of and ductility etc. Test variables are restraining factors of frame, with or without masonry infilled wall, and masonry method Six reinforced concrete rigid frame and masonry infilled wall were tested and constructed in one-third scale size under vertical and cyclic loads simultaneously. Based on the test results, the following conclusions can be made. For masonry infilled wall with restraining factors of frame, maximum horizontal capacities were increased by 1.91~2.24 times in comparision with that of rigid frame. For masonry infilled wall with restraining factors of frame(IFWB-l~3), cumulated energy dissipation capacities wear increased by 1.35~l.60 times in comparision with that of masonry infilled wall(IFB-1) at final stage of testing.

  • PDF

Dynamic Performance of Rubber-Filled Sandwich Composite (Rubber-Filled 샌드위치 복합재료의 진동 특성 평가)

  • Huang, Hao;Joe, Chee-Ryong;Kim, Dong-Uk
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.238-243
    • /
    • 2004
  • A new sandwich composite was investigated in this paper. The honeycomb core of this composite was filled with viscoelastic material in order to obtain an improved damping performance. The viscoelastic fillings in the honeycomb cells was hoped to act as dampers and provide the function of energy dissipation in this combined material system. Dynamic test was set up to the specimens with various stacked carbon/epoxy laminate facesheets, $[0/90]_{4s}$, $[0/45/-45/90]_{2s}$, $[45/-45]_{4s}$. Frequency response, displacement response and damping ratio were checked and compared for the both groups of specimens, with and without rubber fillings. The experimental results provided a good agreement with our material design concept.

  • PDF

Development of Technique for Improvement of Earthquake-Resistant Performance of Reinforced Concrete Infilled Masonry Frame (철근콘크리트 프레임면내 조적벽체의 내진성능개선 기술 개발)

  • 신종학;하기주;최민권;권중배;남왕교
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1143-1148
    • /
    • 2001
  • Experimental programs were accomplished to improve and evaluate the structural performance of test specimens, such as hysteretic behavior, maximum horizontal strength, crack propagation, and ductility etc. Test variables are restraining factors of frame, with or without masonry infilled wall, and masonry method. Six reinforced concrete rigid frame and masonry infiiled wall were constructed and tested in one-third scale size under vertical and cyclic loads simultaneously. Based on the test results, the following conclusions can be made. For masonry infilled walls with restraining factors of frame, maximum horizontal capacities were increased by 1.26~2.24 times in comparision with that of rigid frame. For masonry infilled wall with restraining factors of frame(IFWB-1), cumulated energy dissipation capacities wear increased by 1.60 times in comparision with that of masonry infilled wall(IFB-1) at final stage of testing.

  • PDF

Experimental Structural Performance Evaluation of Precast-Buckling Restrained Brace Reinforced With Engineering Plastics (공업용 플라스틱으로 보강된 비좌굴가새의 실험적 구조성능평가)

  • Kim, Yu-Seong;Kim, Gee-Chul;Kang, Joo-Won;Lee, Joon-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.3
    • /
    • pp.43-52
    • /
    • 2020
  • In this study, the Buckling restrained braces reinforced with engineering plastics that can compensate for the disadvantages in the manufacturing process of the existing buckling restrained brace. The proposed PC-BRB was fabricated to evaluate the reinforcement effect by carrying out a structural performance test and a full-scale two-layer frame test through cyclic loading test. As a result of PC-BRB's incremental and cyclic loading test, stable hysteresis behavior was achieved within the target displacement, and the compressive strength adjustment coefficient satisfied the recommendation. As a result of the real frame experiment, the strength of the reinforced specimen increased compared to the unreinforced specimen, and the ductility and energy dissipation increased.

An Experimental Study for the Structural Behavior of the Precast Prestressed Concrete Columns (프리캐스트 콘크리트 교각의 구조거동에 관한 실험적 연구)

  • Choi, Seung-Won;Shin, Hyun-Mok;Lee, Jae-Hoon;Oh, Byung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.146-149
    • /
    • 2006
  • In many previous studies, a prestressed concrete column has a larger flexural strength, shear strength and restoring force than a RC column. Recently, a precast prestressed concrete column is rising up a very rational column structure in that a economic aspect. In a precast prestressed concrete column, it makes in a factory. So, it needs a small construction site and acquires a higher durability than a cast in place concrete column. Seven precast concrete columns were tested under a constant axial load and a cyclically reversed horizontal load to investigate the performance. It is designed with a hollow section and consisted of 4 segments. The main variables of the test were a amount of prestressed, a type of joints and a boding type of strands. The test results show that the performance of a precast prestressed concrete column; failure mode, maximum load, energy dissipation and stiffness degradation.

  • PDF