• Title/Summary/Keyword: energy dissipation performance

Search Result 739, Processing Time 0.048 seconds

Optimum design and vibration control of a space structure with the hybrid semi-active control devices

  • Zhan, Meng;Wang, Sheliang;Yang, Tao;Liu, Yang;Yu, Binshan
    • Smart Structures and Systems
    • /
    • v.19 no.4
    • /
    • pp.341-350
    • /
    • 2017
  • Based on the super elastic properties of the shape memory alloy (SMA) and the inverse piezoelectric effect of piezoelectric (PZT) ceramics, a kind of hybrid semi-active control device was designed and made, its mechanical properties test was done under different frequency and different voltage. The local search ability of genetic algorithm is poor, which would fall into the defect of prematurity easily. A kind of adaptive immune memory cloning algorithm(AIMCA) was proposed based on the simulation of clone selection and immune memory process. It can adjust the mutation probability and clone scale adaptively through the way of introducing memory cell and antibody incentive degrees. And performance indicator based on the modal controllable degree was taken as antigen-antibody affinity function, the optimization analysis of damper layout in a space truss structure was done. The structural seismic response was analyzed by applying the neural network prediction model and T-S fuzzy logic. Results show that SMA and PZT friction composite damper has a good energy dissipation capacity and stable performance, the bigger voltage, the better energy dissipation ability. Compared with genetic algorithm, the adaptive immune memory clone algorithm overcomes the problem of prematurity effectively. Besides, it has stronger global searching ability, better population diversity and faster convergence speed, makes the damper has a better arrangement position in structural dampers optimization leading to the better damping effect.

Experimental and numerical studies on cyclic behavior of continuous-tenon joints in column-and-tie timber construction

  • Qi, Liangjie;Xue, Jianyang;Xu, Dan
    • Structural Engineering and Mechanics
    • /
    • v.75 no.5
    • /
    • pp.529-540
    • /
    • 2020
  • The mechanical properties of timber construction have drawn more attention after the 2013 Lushan earthquake. A strong desire to preserve this ancient architectural styles has sprung up in recent years, especially for residential buildings of the mountainous areas. In the column-and-tie timber construction, continuous-tenon joints are the most common structural form to connect the chuanfang (similar to the beam in conventional structures) and the column. To study the cyclic performance of the continuous-tenon joints in column-and-tie timber construction, the reversed lateral cyclic loading tests were carried out on three 3/4 scale specimens with different section heights of the chuanfang. The mechanical behavior was assessed by studying the ultimate bending capacity, deformation ductility and energy dissipation capacity. Test results showed that the slippage of chuanfang occurred when the specimens entered the plastic stage, and the slippage degree increased with the increase of the section height of chuanfang. An obvious plastic deformation of the chuanfang occurred due to the mutual squeezing between the column and chuanfang. A significant pinching was observed on the bending moment-rotation curves, and it was more pronounced as the section height of chuanfang increased. The further numerical investigations showed that the flexural capacity and initial stiffness of the continuous-tenon joints increased with the increase of friction coefficient between the chuanfang and the column, and a more obvious increasing of bending moment occurred after the material yielding. The compressive strength perpendicular to grain of the material played a more significant role in the ultimate bending capacity of continuous-tenon joints than the compressive strength parallel to grain.

A Study of the Suitability of Combustion Chemistry in the EDC Model for the LES of Backdraft (백드래프트 현상의 LES를 위한 EDC 모델의 연소 화학반응기구 적합성 연구)

  • Myilsamy, Dinesh;Oh, Chang Bo;Han, Yong Shik;Do, Kyu Hyung
    • Fire Science and Engineering
    • /
    • v.31 no.4
    • /
    • pp.35-42
    • /
    • 2017
  • Large Eddy Simulation (LES) was peformed for the backdraft occurred in a compartment filled with high-temperature methane fuel using the Fire Dynamics Simulator (FDS) of version 6. The prediction performance of FDS, adopted the Eddy Dissipation Concept (EDC) combustion model with five different chemical reaction mechanisms, was evaluated. The temporal distributions of temperature, fuel mass fraction, velocity and pressure were discussed with numerical results and the pressure variation in time was compared with that of previous experiment. The FDS adopted the EDC model showed the possibility of LES for the backdraft phenomena. However, the prediction performance of the LES with EDC model strongly depended on the chemical reaction mechanism considered. It is necessary that the suitability of the chemical reaction mechanism should be validated in advance for LES with the FDS v6 to be applied to the simulation of backdraft.

Shear strengthening of reinforced concrete beams with minimum CFRP and GFRP strips using different wrapping technics without anchoring application

  • Aksoylu, Ceyhun
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.845-865
    • /
    • 2022
  • In this study, the performance of shear deficient reinforced concrete (RC) beams with rectangular cross-sections, which were externally bonded reinforced (EBR) with high strength CFRP and GFRP strips composite along shear spans, has been experimentally and analytically investigated under vertical load. In the study, the minimum CFRP and GFRP strips width over spacing were considered. The shear beam with turned end to a bending beam was investigated by applying different composite strips. Therefore various arising in each of strength, ductility, rigidity, and energy dissipation capacity were obtained. A total of 12 small-scaled experimental programs have been performed. Beam dimensions have been taken as 100×150×1000 mm. Four beams have been tested as unstrengthened samples. This paper focuses on the effect of minimum CFRP and GFRP strip width on behaviours of RC beams shear-strengthened with full-wrapping, U-wrapping, and U-wrapping+longitudinal bonding strips. Strengthened beams showed significant increments for flexural ductility, energy dissipation, and inelastic performance. The full wrapping strips applied against shear failure have increased the load-carrying capacity of samples 53%-63% interval rate. Although full wrapping is the best strengthening choice, the U-wrapping and U-wrapping+longitudinal strips of both CFRP and GFRP bonding increased the shear capacity by 53%~75% compared to the S2 sample. In terms of ductility, the best result has been obtained by the type of strengthening where the S5 beam was completely GFRP wrapped. The experimental results were also compared with the analytically given by ACI440.2R-17, TBEC-2019 and FIB-2001. Especially in U-wrapped beams, the estimation of FIB was determined to be 81%. The estimates of the other codes are far from meeting the experimental results; therefore, essential improvements should be applied to the codes, especially regarding CFRP and GFRP deformation and approaches for longitudinal strip connections. According to the test results, it is suggested that GFRP, which is at least as effective but cheaper than CFRP, may be preferred for strengthening applications.

Analytical Behavior Characteristics Analysis of Automatic Restoring Friction Slit Damper (자동복원 마찰슬릿댐퍼의 해석적 거동특성 분석)

  • Lee, Heon-Woo;Hu, Jong-Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.425-432
    • /
    • 2024
  • In this study, we propose a self-restoring friction slit damper by combining the concepts of self-restoring dampers, friction dampers, and steel dampers that are currently used and researched. For this purpose, an innovative damper structure was designed using superelastic shape memory alloy for automatic recovery and combining the concepts of friction damper and slit damper. Afterwards, detailed design was carried out and variables such as material, with of strut, and bolt fastening force were set. Modeling was performed using the ABAQUS program for a total of 12 dampers, and finite element analysis was performed by substituting the designed loading protocol. As a result, the self-recovering friction slit damper using superelastic shape memory alloy was excellent in terms of load, but the energy dissipation ability was not significantly secured due to the excellent recovery performance. However, friction slit dampers made of Gr.50 steel have dramatically improved performance in terms of load and energy dissipation through innovative structural improvements. Through this, the innovative structure of the damper, which combines the mechanisms of a friction damper and a steel damper, was demonstrated.

Energy-Efficient and Parameterized Designs for Fast Fourier Transform on FPGAs (FPGA에서 FFT(Fast Fourier Transform)를 구현하기 위한 에너지 효율적이고 변수화 된 설계)

  • Jang Ju-Wook;Han Woo-Jin;Choi Seon-Il;Govindu Gokul;Prasanna Viktor K.
    • The KIPS Transactions:PartA
    • /
    • v.13A no.2 s.99
    • /
    • pp.171-176
    • /
    • 2006
  • In this paper, we develop energy efficient designs for the Fast Fourier Transform (FFT) on FPGAs. Architectures for FFT on FPGAs are designed by investigating and applying techniques for minimizing the energy dissipation. Architectural parmeters such as degrees of vertical and horizontal parallelism are identified and a design choices. We determine design trade-offs using high-level performance estimation to obtain energy-efficient designs. We implemented a set storage types as parameters, on Xilinx Vertex-II FPGA to verify the estimates. Our designs dissipate 57% to 78% less energy than the optimized designs from the Xilinx library. In terms of a comprehensive metric such as EAT (Energy-Area-Time), out designs offer performance improvements of 3-13x over the Xilinx designs.

Heterogeneity-aware Energy-efficient Clustering (HEC) Technique for WSNs

  • Sharma, Sukhwinder;Bansal, Rakesh Kumar;Bansal, Savina
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.1866-1888
    • /
    • 2017
  • Efficient energy consumption in WSN is one of the key design issues for improving network stability period. In this paper, we propose a new Heterogeneity-aware Energy-efficient Clustering (HEC) technique which considers two types of heterogeneity - network lifetime and of sensor nodes. Selection of cluster head nodes is done based on the three network lifetime phases: only advanced nodes are allowed to become cluster heads in the initial phase; in the second active phase all nodes are allowed to participate in cluster head selection process with equal probability, and in the last dying out phase, clustering is relaxed by allowing direct transmission. Simulation-based performance analysis of the proposed technique as compared to other relevant techniques shows that HEC achieves longer stable region, improved throughput, and better energy dissipation owing to judicious consumption of additional energy of advanced nodes. On an average, the improvement observed for stability period over LEACH, SEP, FAIR and HEC- with SEP protocols is around 65%, 30%, 15% and 17% respectively. Further, the scalability of proposed technique is tested by varying the field size and number of sensing nodes. The results obtained are found to be quite optimistic. The impact of energy heterogeneity has also been assessed and it is found to improve the stability period though only upto a certain extent.

Numerical and experimental study of the nested-eccentric-cylindrical shells damper

  • Reisi, Alireza;Mirdamadi, Hamid Reza;Rahgozar, Mohammad Ali
    • Earthquakes and Structures
    • /
    • v.18 no.5
    • /
    • pp.637-648
    • /
    • 2020
  • In this study, a new steel cylindrical shell configuration of the dissipative energy device is proposed to improve lateral ductility and to reduce the damage of the structures against seismic forces. Four nested-eccentric- cylindrical shells are used to constructing this device; therefore, this proposed device is named nested-eccentric-cylindrical shells damper (NECSD). The particular configuration of the nested-eccentric-cylindrical shells is applied to promote the mechanical characteristics, stability, and overall performance of the damper in cyclic loads. Shell-type components are performed as a combination of series and parallel non-linear springs into the in-plan plastic deformation. Numerical analysis with respect to dimensional variables are used to calculate the mechanical characteristics of the NECSD, and full-scale testing is conducted for verifying the numerical results. The parametric study shows the NECSD with thin shells were more flexible, while devices with thick shells were more capacious. The results from numerical and experimental studies indicate that the NECSD has a stable behavior in hysteretic loops with highly ductile performance, and can provide appropriate dissipated energy under cyclic loads.

Improving cyclic behavior of multi-level pipe damper using infill or slit diaphragm inside inner pipe

  • Zahrai, Seyed Mehdi;Cheraghi, Abdullah
    • Structural Engineering and Mechanics
    • /
    • v.64 no.2
    • /
    • pp.195-204
    • /
    • 2017
  • Analytical and experimental studies of the innovative pipe in pipe damper have been recently investigated by the authors. In this paper, by adding lead or zinc infill or slit diaphragm inside the inner pipe, it is tried to increase the equivalent viscous damping ratio improving the cyclic performance of the recently proposed multi-level control system. The damper consists of three main parts including the outer pipe, inner pipe and added complementary damping part. At first plastic deformations of the external pipe, then the internal pipe and particularly the added core and friction between them make the excellent multi-level damper act as an improved energy dissipation system. Several kinds of added lead or zinc infill and also different shapes of slit diaphragms are modeled inside the inner pipe and their effectiveness on hysteresis curves are investigated with nonlinear static analyses using finite element method by ABAQUS software. Results show that adding lead infill has no major effect on the damper stiffness while zinc infill and slit diaphragm increase damper stiffness sharply up to more than 10 times depending on the plate thickness and pipe diameter. Besides, metal infill increases the viscous damping ratio of dual damper ranging 6-9%. In addition, obtained hysteresis curves show that the multi-level control system as expected can reliably dissipate energy in different imposed energy levels.

Seismic Performance Evaluation of Existing RC Bridge Piers by Pseudo Dynamic Test (유사동적 실험에 의한 기존 RC 교각의 내진성능 평가)

  • 박종협
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.364-371
    • /
    • 2000
  • The pseudo dynamic test has been carried out so as to investigate the seismic performance of RC bridge piers strengthened with and without glass fiber sheets. The Lessons from severe demage of many infrastructures in Kobe(1995) and Northridge(1996) earthquakes have emphasized the need to develop the retrofit measures to enhance flexural strength, ductility and shear strength of RC bridge piers nonseismically designed before 1992. Therefore, the objective of this experimental research is to investigate the seismic behavior of circular reinforced concrete bridge piers by the pseudo dynamic test. and then to enhance the ductility of concrete piers strengthening with glass fiber sheets in the plastic hinge region. 7 circular RC bridge piers were made in a 1/3.4 scale. Important test parameters are confinement steel ratio, retrofitting. load pattern, etc. The seismic behavior of circular concrete piers under artificial ground motions has been evaluated through strength and stiffness degradation, energy dissipation. It can be concluded that existing bridge piers wrapped with glass fibers in the plastic hinge regions could have enough seismic performance.

  • PDF