• Title/Summary/Keyword: energy dissipating braces

Search Result 14, Processing Time 0.019 seconds

Design of Unbend Braces to Satisfy Given Performance Acceptance Criteria (성능수준 만족을 위한 가새헝 소성 감쇠기의 설계)

  • 김진구;김유경;최현훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.6
    • /
    • pp.47-54
    • /
    • 2001
  • Unbond brace hysteretic dampers are generally used to prevent or decrease structural damage in building structures subjected to strong earthquake by its energy dissipating hysteretic behavior. In the study, a straightforward design procedure for unbond brace hysteretic dampers was developed. The required amount of equivalent damping to satisfy given performance acceptance criteria was obtained conveniently based on the capacity spectrum method without carrying out time-consuming nonlinear dynamic time history analysis. Then the size of the unbond braces is determined from the required equivalent damping. Parametric study has been performed for the design variables such as natural period, yield strength, the stiffness after the first yield stress of the unbond brace. The procedure was applied to 5-story and 10-story steel frames for verification of the proposed method. According to the earthquake time history analysis results, the maximum displacement of the model structure with unbond braces supplied in accordance with the proposed method corresponds well with the given target displacement.

  • PDF

Cyclic behavior of self-centering braces utilizing energy absorbing steel plate clusters

  • Jiawang Liu;Canxing Qiu
    • Steel and Composite Structures
    • /
    • v.47 no.4
    • /
    • pp.523-537
    • /
    • 2023
  • This paper proposed a new self-centering brace (SCB), which consists of four post-tensioned (PT) high strength steel strands and energy absorbing steel plate (EASP) clusters. First, analytical equations were derived to describe the working principle of the SCB. Then, to investigate the hysteretic performance of the SCB, four full-size specimens were manufactured and subjected to the same cyclic loading protocol. One additional specimen using only EASP clusters was also tested to highlight the contribution of PT strands. The test parameters varied in the testing process included the thickness of the EASP and the number of EASP in each cluster. Testing results shown that the SCB exhibited nearly flag-shape hysteresis up to expectation, including excellent recentering capability and satisfactory energy dissipating capacity. For all the specimens, the ratio of the recovered deformation is in the range of 89.6% to 92.1%, and the ratio of the height of the hysteresis loop to the yielding force is in the range of 0.47 to 0.77. Finally, in order to further understand the mechanism of the SCB and provide additional information to the testing results, the high-fidelity finite element (FE) models were established and the numerical results were compared against the experimental data. Good agreement between the experimental, numerical, and analytical results was observed, and the maximum difference is less than 12%. Parametric analysis was also carried out based on the validated FE model to evaluate the effect of some key parameters on the cyclic behavior of the SCB.

Numerical comparison of the seismic performance of steel rings in off-centre bracing system and diagonal bracing system

  • Bazzaz, Mohammad;Andalib, Zahra;Kheyroddin, Ali;Kafi, Mohammad Ali
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.917-937
    • /
    • 2015
  • During a seismic event, a considerable amount of energy is input into a structure. The law of energy conservation imposes the restriction that energy must either be absorbed or dissipated by the structure. Recent earthquakes have shown that the use of concentric bracing system with their low ductility and low energy dissipation capacity, causes permanent damage to structures during intense earthquakes. Hence, engineers are looking at bracing system with higher ductility, such as chevron and eccentric braces. However, braced frame would not be easily repaired if serious damage has occured during a strong earthquake. In order to solve this problem, a new bracing system an off-centre bracing system with higher ductility and higher energy dissipation capacity, is considered. In this paper, some numerical studies have been performed using ANSYS software on a frame with off-centre bracing system with optimum eccentricity and circular element created, called OBS_C_O model. In addition, other steel frame with diagonal bracing system and the same circular element is created, called DBS_C model. Furthermore, linear and nonlinear behavior of these steel frames are compared in order to introduce a new way of optimum performance for these dissipating elements. The obtained results revealed that using a ductile element or circular dissipater for increasing the ductility of off-centre bracing system and centric bracing system is useful. Finally, higher ductility and more energy dissipation led to more appropriate behavior in the OBS_C_O model compared to DBS_C model.

Seismic behavior of structural and non-structural elements in RC building with bypass viscous dampers

  • Esfandiyari, Reza;Nejad, Soheil Monajemi;Marnani, Jafar Asgari;Mousavi, Seyed Amin;Zahrai, Seyed Mehdi
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.487-497
    • /
    • 2020
  • During the last few decades, fluid viscous dampers have been significantly improved in terms of performance and reliability. Viscous dampers dissipate the input energy into heat and the increased temperature may damage internal seals of the damper. As a result, thermal compensation is crucial for almost all fluid viscous dampers. In this study, while referring to the main working principles of the recently developed bypass viscous damper in Iran, a comprehensive case study is conducted on a RC building having diagonal braces equipped with such viscous dampers. Experimental results of a small-scale bypass viscous damper is presented and it is shown that the currently available simplified Maxwell models can simulate behavior of the bypass viscous damper with good accuracy. Using a case study, contribution of bypass viscous dampers to seismic behavior of structural and non-structural elements are investigated. A designed procedure is adopted to increase damping ratio of the building from 3% to 15%. In this way, reductions of 25% and 13% in the required concrete and steel rebar materials have been achieved. From nonlinear time history analyses, it is observed that bypass viscous dampers can greatly improve seismic behavior of structural elements and non-structural elements.