• Title/Summary/Keyword: energy dissipated

Search Result 315, Processing Time 0.025 seconds

A Data Centric Storage based on Adaptive Local Trajectory for Sensor Networks (센서네트워크를 위한 적응적 지역 트라젝토리 기반의 데이터 저장소 기법)

  • Lim, Hwa-Jung;Lee, Joa-Hyoung;Yang, Dong-Il;Tscha, Yeong-Hwan;Lee, Heon-Guil
    • The KIPS Transactions:PartC
    • /
    • v.15C no.1
    • /
    • pp.19-30
    • /
    • 2008
  • Sensor nodes are used as a storage space in the data centric storage method for sensor networks. Sensor nodes save the data to the node which is computed by hash table and users also access to the node to get the data by using hash table. One of the problems which the data centric storage method has is that queries from many users who are interested in the popular data could be concentrated to one node. In this case, responses for queries could be delayed and the energy of heavy loaded node could be dissipated fast. This would lead to reduction of network life time. In this paper, ALT, Data Centric Storage based on Adaptive Local Trajectory, is proposed as scalable data centric storage method for sensor network. ALT constructs trajectory around the storage node. The scope of trajectory is increased or decreased based on the query frequency. ALT distributes the query processing loads to several nodes so that delay of response is reduced and energy dissipation is also distributed.

Parametric Study on Earthquake Responses of Soil-structure Interaction System by Substructure Method (부분구조법에 의한 지반-구조물상호작용시스템의 지진응답 매개변수 연구)

  • 박형기;조양희
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.1-10
    • /
    • 1998
  • In the dynamic soil-structure interaction(SSI) analysis, numerous uncertain parameters are involved. They include the uncertainties in the definition of input motions, modeling of soil-structure interaction systems. analysis techniques, etc. This paper presents the results of parametric studies of the seismic responses of a reactor containment structure built on the viscoelastic layered soil. Among the numerous parameter, this study concentrates on the effects of definition point of the input motion, embedment of structure to the base soil, thickness of the top soil layer, and rigidity of the base soil. The substructure method using frequency independent impedances is adopted. The method is based on the mode superposition method in time domain using the composite modal damping values of th SSI system computed from the ratio of dissipated energy to the strain energy for each model. From the study results, the sensitivity of each parameter on the earthquake responses has been suggested for the practical application of the substructure method of SSI analysis.

  • PDF

Dynamic behavior of SRC columns with built-in cross-shaped steels subjected to lateral impact

  • Liu, Yanhua;Zeng, Lei;Liu, Changjun;Mo, Jinxu;Chen, Buqing
    • Structural Engineering and Mechanics
    • /
    • v.76 no.4
    • /
    • pp.465-477
    • /
    • 2020
  • This paper presents an investigation on the dynamic behavior of SRC columns with built-in cross-shaped steels under impact load. Seven 1/2 scaled SRC specimens were subjected to low-speed impact by a gravity drop hammer test system. Three main parameters, including the lateral impact height, the axial compression ratios and the stirrup spacing, were considered in the response analysis of the specimens. The failure mode, deformation, the absorbed energy of columns, as well as impact loads are discussed. The results are mainly characterized by bending-shear failure, meanwhile specimens can maintain an acceptable integrity. More than 33% of the input impact energy is dissipated, which demonstrates its excellent impact resistance. As the impact height increases, the flexural cracks and shear cracks observed on the surface of specimens were denser and wider. The recorded time-history of impact force and mid-span displacement confirmed the three stages of relative movement between the hammer and the column. Additionally, the displacements had a notable delay compared to the rapid changes observed in the measured impact load. The deflection of the mid-span did not exceed 5.90mm while the impact load reached peak value. The impact resistance of the specimen can be improved by proper design for stirrup ratios and increasing the axial load. However, the cracking and spalling of the concrete cover at the impact point was obvious with the increasing in stiffness.

Regular Wave Generation Using Three Different Numerical Models under Perfect Reflection Condition and Validation with Experimental Data (세 가지 수치모델을 이용한 완전반사 조건에서의 규칙파 조파 및 수리실험 검증)

  • Oh, Sang-Ho;Ahn, Sukjin
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.4
    • /
    • pp.199-208
    • /
    • 2019
  • Regular waves were generated in a wave flume under perfect reflection condition to evaluate performance of three CFD models of CADMAS-SURF, olaFlow, and KIOSTFOAM. The experiments and numerical simulations were carried out for three different conditions of non-breaking, breaking of standing waves, and breaking of incident waves. Among the three CFD models, KIOSTFOAM showed best performance in reproducing the experimental results. Although the run time was reduced by using CADMAS-SURF, its computational accuracy was worse than KIOSTFOAM. olaFlow was the fastest model, but active wave absorption at the wave generation boundary was not satisfactory. In addition, the model excessively dissipated wave energy when wave breaking occurred.

Impact response of a novel flat steel-concrete-corrugated steel panel

  • Lu, Jingyi;Wang, Yonghui;Zhai, Ximei;Zhou, Hongyuan
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.277-288
    • /
    • 2022
  • A novel flat steel plate-concrete-corrugated steel plate (FS-C-CS) sandwich panel was proposed for resisting impact load. The failure mode, impact force and displacement response of the FS-C-CS panel under impact loading were studied via drop-weight impact tests. The combined global flexure and local indentation deformation mode of the FS-C-CS panel was observed, and three stages of impact process were identified. Moreover, the effects of corrugated plate height and steel plate thickness on the impact responses of the FS-C-CS panels were quantitatively analysed, and the impact resistant performance of the FS-C-CS panel was found to be generally improved on increasing corrugated plate height and thickness in terms of smaller deformation as well as larger impact force and post-peak mean force. The Finite Element (FE) model of the FS-C-CS panel under impact loading was established to predict its dynamic response and further reveal its failure mode and impact energy dissipation mechanism. The numerical results indicated that the concrete core and corrugated steel plate dissipated the majority of impact energy. In addition, employing end plates and high strength bolts as shear connectors could prevent the slip between steel plates and concrete core and assure the full composite action of the FS-C-CS panel.

Cyclic loading test for concrete-filled hollow PC column produced using various inner molds

  • Chae-Rim Im;Sanghee Kim;Keun-Hyeok Yang;Ju-Hyun Mun;Jong Hwan Oh;Jae-Il Sim
    • Steel and Composite Structures
    • /
    • v.46 no.6
    • /
    • pp.793-804
    • /
    • 2023
  • In this study, cyclic loading tests were conducted to assess the seismic performance of cast-in-place (CIP) concrete-filled hollow core precast concrete columns (HPCC) constructed using steel ducts and rubber tubes. The outer shells of HPCC, with a hollow ratio of 47%, were fabricated using steel ducts and rubber tubes, respectively. Two combinations of shear studs & long threaded bars or cross-deformed bars & V-ties were employed to ensure the structural integrity of the old concrete (outer shell) and new CIP concrete. Up to a drift ratio of 3.8%, the hysteresis loop, yielding stiffness, dissipated energy, and equivalent damping ratio of the HPCC specimens were largely comparable to those of the solid columns. Besides the similarities in cyclic load-displacement responses, the strain history of the longitudinal bars and the transverse confinement of the three specimens also exhibited similar patterns. The measured maximum moment exceeded the predicted moment according to ACI 318 by more than 1.03 times. However, the load reduction of the HPCC specimen after reaching peak strength was marginally greater than that of the solid specimen. The energy dissipation and equivalent damping ratios of the HPCC specimens were 20% and 25% lower than those of the solid specimen, respectively. Taking into account the overall results, the structural behavior of HPCC specimens fabricated using steel ducts and rubber tubes is deemed comparable to that of solid columns. Furthermore, it was confirmed that the two combinations for securing structural integrity functioned as expected, and that rubber air-tubes can be effectively used to create well-shaped hollow sections.

Experimental Study of Flip-Bucket Type Hydraulic Energy Dissipator on Steep slope Channel (긴구배수로 감세공의 Filp Bucket형 이용연구)

  • 김영배
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.1
    • /
    • pp.2206-2217
    • /
    • 1971
  • Spillway and discharge channel of reservoirs require the Control of Large volume of water under high pressure. The energies at the downstream end of spillway or discharge channel are tremendous. Therefore, Some means of expending the energy of the high-velocity flow is required to prevent scour of the riverbed, minimize erosion, and prevent undermining structures or dam it self. This may be accomplished by Constructing an energy dissipator at the downstream end of spillway or discharge channel disigned to dissipated the excessive energy and establish safe flow Condition in the outlet channel. There are many types of energy dissipators, stilling basins are the most familar energy dissipator. In the stilling basin, most energies are dissipated by hydraulic jump. stilling basins have some length to cover hydraulic jump length. So stilling basins require much concrete works and high construction cost. Flip bucket type energy dissipators require less construction cost. If the streambed is composed of firm rock and it is certain that the scour will not progress upstream to the extent that the safety of the structure might be endangered, flip backet type energy dissipators are the most recommendable one. Following items are tested and studied with bucket radius, $R=7h_2$,(medium of $4h_2{\geqq}R{\geqq}10h_2$). 1. Allowable upstream channel slop of bucket. 2. Adequate bucket lip angle for good performance of flip bucket. Also followings are reviwed. 1. Scour by jet flow. 2. Negative pressure distribution and air movement below nappe flow. From the test and study, following results were obtained. 1. Upstream channel slope of bucket (S=H/L) should be 0.25<H/L<0.75 for good performance of flip bucket. 2. Adequated lip angle $30^{\circ}{\sim}40^{\circ}$ are more reliable than $20^{\circ}{\sim}30^{\circ}$ for the safety of structures.

  • PDF

Relationship between Higher Protein Contents in the Diet and Adipose Tissue Fat Accumulation (II) -Effect of isocaloric low, medium and high protein diets on the cellular activities of rat liver- (높은률의 단백질 함유 식이와 지방 세포의 지방축적과 상호 관계(II) -동 열량의 저, 중, 고 단백식이가 흰쥐의 간 세포활성에 미치는 영향-)

  • Park, Ock-Jin;Lee, Jung-Hee;Lee, In-Sook
    • Journal of Nutrition and Health
    • /
    • v.17 no.3
    • /
    • pp.210-216
    • /
    • 1984
  • The growth response, lipid deposition, fat free body mass and energy expenditure of weanling rats fed the equal amount of isocaloric diets containing 8%, 13% and 18% casein were investigated. After a period of 30day feeding, the rats fed low level of protein diet were 43.01g lighter than 18% protein group (weight gains of ${85.57}{\pm}{7.50g}$ vs. ${128.58}{\pm}{11.64g}$, p<0.01). Despite of the smaller body size, there were no significant differences in lipid deposition in grams per carcass. Whereas, nitrogen accumulation was significantly greater in 13% and 18% protein fed groups compared to 8%. The estimated energy expenditure were 4,576.61 kJ, 5,440.80kJ and 5,607.67kJ for 8%, 13% and 18% protein groups respectively. The part of excess energy consumed by the low protein group may have been dissipated. The malic enzyme activity in the liver of rats was found to be unaltered by different dietary treatments. From these observations, it was conluded that the retarded growth response in lower protein level may have been originated from the shortage ge of protein supply rather than that of the energy. The protein restriction appeared to be resulted in the lower fat free compartment without affecting the ability of rats to synthesize body lipid in a similar rate to the higher protein group when energy intakes were equalized.

  • PDF

Collision Behaviors Analysis of Sandwich Concrete Panel for Outer Shell of LNG Tank (LNG외조를 구성하는 샌드위치 콘크리트 패널의 충돌거동해석)

  • Lee, Gye Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.485-493
    • /
    • 2017
  • In this study, the collision analysis of SCP(Sandwich Concrete Panel) composing the outer tank of LNG storage was performed and its collision behavior was analyzed. For the same collision energy value proposed in BS7777 code, the collision conditions are composed by using two types of missiles and various collision speeds. Nonlinear dynamic analysis models were constructed to perform numerical analysis on the various collision conditions. Also, the collision behavior was analyzed assuming that the second collision with the same collision energy occurs at the same point after the first collision. As a result of the analysis, it was found that with smaller missile and low collision speed had caused larger deformation. The collision energy dissipated in ratio of about 6: 4 in the outer steel plate and the inner filling concrete. In the results of double collision analysis, the final collisional deformation was dominated by the size of the second missile, and the amount of deformation due to the second collision was smaller than that of the first collision because of the membrane behavior of the steel plates. In the offset double collision cases, the largest deformation occurs at the secondary collision point regardless of the offset distance.

해상풍속측정용 마스트의 충격해석에 관한 연구

  • Lee, Gang-Su;Kim, Man-Eung;Son, Chung-Ryeol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.108-108
    • /
    • 2009
  • The main object of this research is to minimize the shock effects which frequently result in fatal damage in wind met mast on impact of barge. The collision between wind met mast and barge is generally a complex problem and it is often not practical to perform rigorous finite element analyses to include all effects and sequences during the collision. LS-dyna generally purpose explicit finite element code, which is a product of ANSYS software, is used to model and analyze the non-linear response of the met mast due to barge collision. A significant part of the collision energy is dissipated as strain energy and except for global deformation modes, the contribution from elastic straining can normally be neglected. On applying impact force of a barge to wind met mast, the maximum acceleration, internal energy and plastic strain were calculated for each load cases using the finite element method and then compare it, varying to the velocity of barge, with one varying to the thickness of rubber fender conditions. Hence, we restrict the present research mainly to the wind met mast and also parametric study has been carried out with various velocities of barge, thickness of wind met mast, thickness and Mooney-Rivlin coefficient of rubber fender with experimental data. The equation of motion of the wind met mast is derived under the assumption that it was ignored vertical movement effect of barge on sea water. Such an analyzing method which was developed so far, make it possible to determine the proper size and material properties of rubber fender and the optimal moving conditions of barge, and finally, application method can be suggested in designing process of rubber fender considering barge impact.

  • PDF